Hydrolysis of Lactose: Estimation of Kinetic Parameters Using Artificial Neural Networks  被引量:1

Hydrolysis of Lactose: Estimation of Kinetic Parameters Using Artificial Neural Networks

在线阅读下载全文

作  者:Anahi V. Cuellas Sebastian Oddone Enrique J. Mammarella Amelia C. Rubiolo 

机构地区:[1]lngenierla en Alimentos, Universidad Nacional de Quilmes, Roque Saenz Peha 380, Bernal-Buenos Aires, Argentina [2]Universidad Argentina de la Empresa-UADE, Lima 775, Buenos Aires, Argentina [3]Instituto de Desarrollo Tecnol6gico para la Industria Quimica-INTEC (Conicet-UNL), Giiemes 3450, Santa Fe, Argentina

出  处:《Journal of Agricultural Science and Technology(A)》2013年第10期811-818,共8页农业科学与技术(A)

摘  要:The analysis of any kinetic process involves the development of a mathematical model with predictive purposes. Generally, those models have characteristic parameters that should be estimated experimentally. A typical example is Michaelis-Menten model for enzymatic hydrolysis. Even though conventional kinetic models are very useful, they are only valid under certain experimental conditions. Besides, frequently large standard errors of estimated parameters are found due to the error of experimental determinations and/or insufficient number of assays. In this work, we developed an artificial neural network (ANN) to predict the performance of enzyme reactors at various operational conditions. The net was trained with experimental data obtained under different hydrolysis conditions of lactose solutions or cheese whey and different initial concentrations of enzymes or substrates. In all the experiments, commercial 13-galactosidase either free or immobilized in a chitosan support was used. The neural network developed in this study had an average absolute relative error of less than 5% even using few experimental data, which suggests that this tool provides an accurate prediction method for lactose hydrolysis.

关 键 词:Cheese whey fl-galactosidase lactose hydrolysis artificial neural network. 

分 类 号:O484.1[理学—固体物理] TP183[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象