检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆交通大学机电与汽车工程学院,重庆400074
出 处:《汽车工程学报》2013年第6期433-439,共7页Chinese Journal of Automotive Engineering
基 金:重庆市科技计划项目(CSTC2011GGC250)
摘 要:在研究某ISG型轻度混合动力汽车(Mild Hybrid Electric Vehicle,MHV)控制策略的基础上,选择对动力性和经济性有较大影响的主减速器传动比、变速器各挡传动比以及变速器换挡规律为优化参数,以加速时间和等效燃油消耗为优化目标,通过GT-SUITEMP建立整车仿真模型。采用带精英策略的快速非支配排序遗传算法(NSGA-II),基于mode FRONTIER(MF)建立了多目标优化模型。通过联合仿真分析,得到了Pareto最优解,与优化前相比,加速时间减少了3.5%,等效燃油消耗降低了9.4%。Based on the study of the control strategy of integrated starter/generator mild hybrid electric vehicle (MHV), the vehicle simulation model was established via GT-SUITEMP. Aiming at optimizing acceleration time and equivalent fuel consumption, the final drive ratio, each gear ratio and gear shifting rule were selected as optimization parameters, which have great influence on power performance and fuel economy. Based on the mode FRONTIER (MF), multi-objective optimization model was set up by adopting the fast and elitist non-dominated sorting generic algorithm (NSGA-II) and the Pareto optimal solutions could be obtained through co-simulation analysis. Compared with the original vehicle, acceleration time is reduced by 3.5% and the equivalent fuel consumption is reduced by 9.4% in the final solution.
关 键 词:轻度混合动力汽车(MHV) 动力传动系 遗传算法 多目标优化
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28