空间数据库中反最远邻查询方法  被引量:2

Efficient algorithm for reverse furthest neighbor in spatial databases

在线阅读下载全文

作  者:邓成玉[1,2] 彭川[1] 王宝文[1,2] 刘文远[1,2] 吴晓光[3] 

机构地区:[1]燕山大学信息科学与工程学院,河北秦皇岛066004 [2]河北省计算机虚拟技术与系统集成重点实验室,河北秦皇岛066004 [3]郑州大学信息工程学院,河南郑州450000

出  处:《燕山大学学报》2013年第5期412-419,共8页Journal of Yanshan University

摘  要:在欧式空间下反最远邻查询算法的研究已取得了很多成果,但反最远邻查询问题还未得到有效解决。本文提出一种反最远邻查询算法,有效地解决了反最远邻查询问题,查询算法采用了过滤-提炼的解决模型。在过滤阶段,提出了反远中垂线裁剪方法。该裁剪法是通过做中垂线来过滤不是查询点的反最远邻的点。在提炼阶段,提出了反远范围查询提炼方法。该提炼方法是通过判断对象点是否在设定的范围外来验证该点是否是查询点的反最远邻。最后通过实验验证了所提算法的有效性。At present, the reverse furthest neighbor query algorithm research has made a lot of achievements in spatial databases. But the problem of reverse furthest neighbor query is not effectively resolved in spatial databases. In this paper, a new reverse k furthest neighbor query algorithm is proposed, which effectively solve the reverse k furthest neighbor query problem in spatial dat- abases. The filter-refining solution model is used in this algorithm. In the filter stage, the reverse furthest perpendicular bisector cutting method is put forward, which can filter these points that are not the reverse k furthest neighbor points through the perpen- dicular bisectors. And in the refining stage, the reverse furthest range-k refining method is proposed, which can verify the point by determining whether it is out of the range. The experimental results show that the proposed algorithm is effective and efficiency.

关 键 词:空间数据库 反最远邻 最远邻 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象