基于多点地质统计学的岩性气藏精细建模方法与应用  被引量:5

Method and application of stochastic modeling for lithologic gas reservoir based on multiple-point geostatistics

在线阅读下载全文

作  者:杨勇[1] 聂海峰 张雅玲[1] 谭蓓 鲜波[3] 

机构地区:[1]中国石油长庆油田公司勘探开发研究院,陕西西安710021 [2]中国石油塔里木油田塔西南勘探开发公司,新疆喀什844804 [3]中国石油塔里木油田公司勘探开发研究院,新疆库尔勒841000

出  处:《断块油气田》2013年第6期723-726,共4页Fault-Block Oil & Gas Field

基  金:国家科技重大专项课题"鄂尔多斯盆地大型岩性地层油气藏勘探开发示范工程"(2008ZX05044-003-16)

摘  要:针对岩性气藏复杂地质特征导致的气藏描述和预测中的不确定性,在对比评价随机建模理论与方法适应性的基础上,提出以多点地质统计学为核心的"井-震-沉积模式"岩性气藏随机建模方法,即以先验地质认识为基础,充分利用井点"硬数据"、三维地震数据及现代河流沉积模式等多域信息,以多点地质统计学的训练图像代替经典地质统计学的变差函数,综合运用各种信息,形成了岩性气藏精细地质建模技术与方法。在苏里格气田某三维试验区,通过多点地质统计学多域信息整合功能,建立试验区精细地质模型。模型评价结果表明,井震结合建模策略可以有效降低河流相岩性气藏储层表征的不确定性,显著提高了模拟精度和运算效率。The complex geological features of lithologie gas reservoir result in the uncertainty of gas reservoir description and predition. Based on the theol7 of multi-point geustatistics, the stochastic modeling method For lithtlogic gas reserw^ir of tile "weld seismic-sedimentah'y mode" with multipoint geostatistics as the core is proposed, thai is based on a priori geological knowledge and lakes fall use of multi-dumain information such as well point hard data, seismic data and modern river sedimentary mode. A muhi-poinl geoslatistics "training images" instead of classical geustatistics "variogram" will make comprehensive use of various infovtnation creatively to form a detailed geological modeling theory and method for lithologic gas reserwir. In one 3-1) test area of Sulige (,;as Field, a fine geological model for test area is huilt through the muhi-domain information integration of multi-point geostatisties. The evaluation resuh uf model shows that the eombination of well-seismic modeling strategy can effectively reduce the cause of strong tluvial gas reservoir and the uneertainly of lithologie gas reservoir characterization, and improve the complex geometry and the simulation accuracy and computational efficiency of high-sinuosity fluvial reservoir.

关 键 词:岩性气藏 多点地质统计学 训练图像 井震结合 随机建模 

分 类 号:TE319[石油与天然气工程—油气田开发工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象