检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学计算机科学与技术学院,山西太原030024
出 处:《计算机应用与软件》2013年第11期184-186,198,共4页Computer Applications and Software
基 金:山西省回国留学人员科研资助项目(2011-028)
摘 要:针对传统关联分类算法中支持度和置信度阈值无法根据问题规模准确设定,导致分类器的分类效果受人为因素影响的缺陷,提出一种基于智能优化思想的关联分类算法。该算法对CBA关联分类算法进行改进,利用模拟退火技术良好的全局搜索能力在解空间内对支持度和置信度阈值进行优化,从而使分类准确率达到全局最优。实验表明,与传统的关联分类算法相比,该方法可以有效地避免阈值设置不合理而影响分类效果的弊端,使分类结果更加精准。Traditional associative classification algorithm can not accurately set support and confidence threshold according to the scale of the problem, which leads to the performance of the classifier affected by human factors. To resolve the issue, we propose an intelligent optimi-sation idea-based associative classification algorithm. The algorithm improves the CBA associative classification algorithm and makes use of the good ability of simulated annealing in global search to optimise the support and confidence threshold in solution space so as to achieve global optimum in classification accuracy rate. Experiments show that this method can effectively prevent the unreasonable setting of the threshold from the disadvantage of impacting classification effect and enables more accurate classification performance compared with tradition- al associative classification algorithm.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195