出 处:《Journal of Rare Earths》2013年第11期1096-1101,共6页稀土学报(英文版)
基 金:supported by National Natural Science Foundation of China(60907021,60977035,60877029);Tianjin Natural Science Foundation(11JCYBJC00300)
摘 要:Lanthanum hexaboride nanopartieles, with high emission electrons in cathode materials and peculiar blocking near infrared wavelengths, were applied for many aspects. Based on the quasi-static approximation of Mie theory, the size dependent optical prop- erties of LaB6 nanoparticles were researched, such as refractive index n(ω), extinction coefficient k(ω), reflectivity R(ω), absorption coefficient a(ω), and electron energy loss L(ω). Due to the localized surface plasmon resonance (LSPR), the extinction coefficient k(ω) and absorption coefficient a(ω) depended on the size, and the LSPR peaks red-shifted with sizes increased, which was different from that of bulk materials. In addition, electron energy-loss spectrum L(co) showed electrons oscillation reinforced, since electrons absorbed the photon energy and generated resonance. Further, reftectivity R(ω) and refractive index n(ω) indicated that the light in near infrared region could not be propagated on the surface of LaB6 materials, which exhibited metallic behaviors. So the resonance peak of LaB6 nanoparticle was located in near-infrared region, making use of this property for solar control glazing and heat-shielding application.Lanthanum hexaboride nanopartieles, with high emission electrons in cathode materials and peculiar blocking near infrared wavelengths, were applied for many aspects. Based on the quasi-static approximation of Mie theory, the size dependent optical prop- erties of LaB6 nanoparticles were researched, such as refractive index n(ω), extinction coefficient k(ω), reflectivity R(ω), absorption coefficient a(ω), and electron energy loss L(ω). Due to the localized surface plasmon resonance (LSPR), the extinction coefficient k(ω) and absorption coefficient a(ω) depended on the size, and the LSPR peaks red-shifted with sizes increased, which was different from that of bulk materials. In addition, electron energy-loss spectrum L(co) showed electrons oscillation reinforced, since electrons absorbed the photon energy and generated resonance. Further, reftectivity R(ω) and refractive index n(ω) indicated that the light in near infrared region could not be propagated on the surface of LaB6 materials, which exhibited metallic behaviors. So the resonance peak of LaB6 nanoparticle was located in near-infrared region, making use of this property for solar control glazing and heat-shielding application.
关 键 词:LaB6 nanoparticles optical properties localized surface plasmon resonance absorption coefficient extinction coefficient rare earths
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...