基于多核机群的人工鱼群并行算法  被引量:3

Artificial fish swarm parallel algorithm based on multi-core cluster

在线阅读下载全文

作  者:李双[1] 李文敬[1] 孙环龙[1] 林中明[1] 

机构地区:[1]广西师范学院计算机与信息工程学院,南宁530023

出  处:《计算机应用》2013年第12期3380-3384,共5页journal of Computer Applications

基  金:国家自然科学基金资助项目(61163012);广西自然科学基金资助项目(2012GXNSFAA053218);广西高校科学技术研究项目(2013YB147)

摘  要:针对人工鱼群算法在复杂多峰函数优化问题上寻优精度低、后期搜索能力减弱且运行时间长等问题,提出一种基于多核机群的人工鱼群并行算法(PDN-AFS)。首先对人工鱼群算法的优势与不足进行分析,采用动态权衡因子策略并适时引入小生境机制,提出一种新的人工鱼群(DN-AFS)算法;然后根据多核机群的并行编程模型(MPI+OpenMP),对DN-AFS算法进行并行设计与分析,提出基于多核机群的人工鱼群并行算法;最后在多核机群环境下进行仿真实验。实验结果表明:该算法有效地提高了复杂多峰函数优化问题的收敛速度和寻优性能,并获得了较高的加速比。Concerning the problems of low accuracy, limitations of stagnation and slow convergence speed in the later evolution process of Artificial Fish Swarm Algorithm (AFSA), a Parallel Dynamic weigh Niches Artificial Fish Swarm ( PDN- AFS} algorithm based on multi-core cluster was proposed. Firstly, the advantages and disadvantages of AFSA were analyzed, and dynamic weighting factor strategy and niche mechanism were adopted, hence a new Dynamic weigh Niches Artificial Fish Swarm (DN-AFS) algorithm was put forward. Then parallel design and analysis of DN-AFS algorithm based on parallel programming model ( MPI + OpenMP) were introduced. Finally, the simulation experiments on multi-core cluster environment were given. The experimental results show that PDN-AFS can effectively improve the convergence speed and optimization performance of the complex multimodal function optimization problem, and achieve high speed ratio.

关 键 词:人工鱼群算法 动态权衡因子 小生境 并行算法 MPI+OPENMP 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构] TP18[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象