检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学物联网工程学院,江苏无锡214122
出 处:《计算机应用》2013年第12期3586-3590,共5页journal of Computer Applications
摘 要:针对云计算的资源管理问题,提出了云计算数据中心的能量模型以及四个虚拟机放置算法。首先计算每个机架上主机的负载并根据设定的阈值进行归类,然后采用最少迁移策略从主机上选择合适迁移的虚拟机并且接受新的虚拟机分配请求,对每个虚拟机与主机集合进行匹配,选择最优化的主机进行放置。实验结果表明,与现有的能量感知资源分配方法相比,该方法在主机、网络设备以及冷却系统方面能量利用率分别提高了2.4%,18.5%和28.1%,总的能量利用率平均提高了14.5%。Abstract: Concerning the management of the resources in cloud, an energy model and four Virtual Machine Placement (VMP) algorithms were proposed. Firstly, the algorithms calculated the load of the servers in each rack and classified them according to the thresholds. Then the proposed methods selected appropriate virtual machines fi'om servers to migrate using the minimization of migrations policy and accepted the new coming virtual machine allocation requests. At last, the algorithms matched each virtual machine with the servers and found the best server for placement. The experimental results show that, compared with the existing energy-aware resource management algorithm, the proposed technique improves energy efficiency of servers, network equipment, and cooling systems by 2.4%, 18.5%, and 28.1% respectively, resulting in a total of 14.5% improvement on average in the entire datacenter.
关 键 词:云计算 虚拟机放置 数据中心 阈值 能量利用率 能量感知
分 类 号:TP393.02[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.54.178