聚二甲基硅氧烷-聚苯乙烯复合微流控芯片室温不可逆封合法的研究  被引量:3

An Approach for Irreversible Bonding of PDMS-PS Hybrid Microfluidic Chips at Room Temperature

在线阅读下载全文

作  者:胡贤巧[1] 何巧红[1] 白泽清 苏法铭 陈恒武[1] 

机构地区:[1]浙江大学化学系微分析系统研究所,杭州310058

出  处:《化学学报》2013年第11期1535-1539,共5页Acta Chimica Sinica

基  金:国家重点基础研究发展计划(973;No.2007CB714502);国家自然科学基金(No.20890020)资助~~

摘  要:研究了一种基于紫外光/臭氧(UV/O3)表面改性和硅烷化技术的聚二甲基硅氧烷(PDMS)与聚苯乙烯(PS)的不可逆封合的新方法.首先,用UV/O3处理PS使其表面产生羟基、羧基等极性基团;然后用3-氨丙基三乙氧基硅烷(APTES)对UV/O3处理后的PS硅烷化,使其表面形成氨丙基硅分子链;再将硅烷化后的PS与拟封合的PDMS同时用UV/O3处理,使两者表面均产生硅羟基.最后将处理后的PDMS与PS贴合,通过硅羟基之间的缩合实现两者的不可逆封合.以接触角、XPS和ATR-FT-IR对封合过程进行表征.封合的PDMS-PS复合芯片可承受大于0.5 MPa的压强.采用该方法制备了PDMS-PS复合微流控芯片用于HeLa细胞的培养.实验表明,HeLa细胞在PDMS-PS复合芯片通道内的生长状况大大优于在全PS芯片、略好于在全PDMS芯片内的生长状况.In some circumstances, hybrid polymer microfluidic chips composed of both elastic, gas-permeable polydi- methylsiloxane (PDMS) and rigid plastics are needed. However, it is quite difficult to bond PDMS irreversibly to plastics such as polystyrene (PS). In this article, a facile method for irreversible bonding of PDMS to PS was proposed based on UV/O3-assisted surface modification in combination of surface silanization. Firstly, a PS sheet was exposed to UV/O3 to produce oxygen-containing polar moieties, such as hydroxyl and carboxvlic acid, on its surface. Secondly, the UV/O3 treated FS sheet was silanized with (3-aminopropyl)triethoxysilane (APTES) via the reaction between the oxygen-containing polar moieties on the PS surface and the molecules of APTES. Thirdly, the silanized-PS sheet and the PDMS substrate with micro channel network were treated with UV/O3 again to generate silanol moieties on both surfaces. Finally, the UV/O3 treated PDMS was immediately brought intimate contact with the UV/O3 treated silanized-PS, and irreversible bonding of PDMS with PS occurred after putting the PDMS-PS complex at room temperature for 1 h through the condensation reaction between silanol moieties. Contact angle measurement, X-ray photoelectron spectroscopy, total reflection Fourier transformation infra- red spectrometer were applied to characterize the surface chemistry of the PS during the UV/O3 treatment and silanization. The hybrid PDMS-PS microfludic chips prepared with the established method can bear a gas pressure higher than 0.5 MPa and a water stream at a flow rate higher than 170 I^L/min (the test channels were 2.5 cm in the length, 50 lam in the width, 200 ~m in the depth). A hybrid PDMS-PS microfluidic chip composed of gas-permeable PDMS substrate with channel net- work and excellently biocompatible PS cover sheet was fabricated for cell culture. The experimental results showed that HeLa cells cultured in the hybrid PDMS-PS microchip grew much better than those cultured in the full PS microch

关 键 词:复合芯片 聚二甲基硅氧烷 聚苯乙烯 不可逆封合 细胞培养 

分 类 号:TN492[电子电信—微电子学与固体电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象