一种基于块稀疏贝叶斯学习的压缩图像融合算法  被引量:3

A Compressive Image Fusion Algorithm Based on Block Sparse Bayesian Learning

在线阅读下载全文

作  者:刘哲[1] 顾淑音 南炳炳 李强[1] 

机构地区:[1]西北工业大学理学院,西安710129

出  处:《光子学报》2013年第11期1365-1369,共5页Acta Photonica Sinica

基  金:国家自然科学基金(No.61071170)资助

摘  要:针对自然信号、图像中的丰富时序结构会影响基于多观测向量的压缩图像融合算法性能,基于块稀疏贝叶斯学习,构造了一种新的压缩图像融合算法.该算法采用概率性方法,利用正定矩阵模型化数据间的时序结构对图像中的时序结构进行建模,并将其统一在多观测向量模型中,进而通过贝叶斯规则和对超参量的估计,获取原始图像数据的最大后验估计.为验证该算法的有效性,对其进行了图像融合实验.仿真实验结果表明,与单观测向量模型下的压缩图像融合算法相比,所提出算法能有效降低所需的采样数量,且对多类图像都表现出更优的融合效果.Natural signals and images usually have rich temporal structures, which greatly influence the performance of the compressive image fusion algorithms based multiple measurement vectors. In this paper, a new compressive image fusion algorithm was investigated based on block sparse Bayesian learning. The proposed algorithm used a probabilistic approach, and constructed the temporal structures of images via the positive definite matrices under the multiple measurement vectors model. Thus, the MAP estimate of original images were obtained according to the Bayes rule and the estimation of hyperparameters. To verify the applicability of the proposed method, numerical experiments of image fusion were performed. Numerical results indicate that the proposed method can obviously reduce the sampling number required, and provide better fusion performance for many kinds of images compared to algorithms based on single measurement vector model.

关 键 词:压缩感知 压缩图像融合 块稀疏贝叶斯学习 多观测向量模型 时序结构 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象