检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河池学院,宜州546300
出 处:《计算机科学》2013年第11A期157-159,187,共4页Computer Science
基 金:广西教育厅科研基金项目(201106LX577;201106LX604);国家自然科学基金项目(40971234);河池学院青年科研项目(2012B-N005;2012B-N007)资助
摘 要:样本距离机制的定义直接影响到KNN算法的准确性和效率。针对传统KNN算法在距离的定义及类别决定上的不足,提出了利用属性值对类别的重要性进行改进的KNN算法(FCD-KNN)。首先定义两个样本间的距离为属性值的相关距离,此距离有效度量了样本间的相似度。再根据此距离选取与待测试样本距离最小的K个近邻,最后根据各类近邻样本点的平均距离及个数判断待测试样本的类别。理论分析及仿真实验结果表明,FCD-KNN算法较传统KNN及距离加权-KNN的分类准确性要高。Definition of the samples will directly impact on the accuracy and the efficiency of KNN. In view of disadvantages to the traditional KNN algorithm on the distance the definition and categories of decision, proposed the use of attribute importance to category to improve KNN algorithm (FCD-KNN). At first, a distance of the two samples is defined as the correlation distance of the same attribute values. The distance can effectively measure the similarity degree of the two sample. Secondly, According to this distance selects the k nearest neighbors. Finally, the category of the test sample is decided by the average distance and the numbers on the respective category. The theoretical analysis and the simulation experiment show that compared with KNN and-KNN, raised the rate of accuracy enormously in classification.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.238.63