检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电力建设》2013年第11期39-44,共6页Electric Power Construction
基 金:国家电网公司科技项目(ND71-10-005)
摘 要:由于电网工程导线价格具有非线性和非平稳性特征,导致其价格预测难度大、预测精度低,针对这一问题,建立了EEMD-ARMA预测模型。利用集合经验模态分解(ensemble empirical mode decomposition,EEMD)对经验模态分解(empirical mode decomposition,EMD)进行改进,通过EEMD将历史价格分解为平稳的、周期波动的若干价格分量,并以此作为输入,利用自回归滑动平均模型(auto regressive and moving average model,ARMA)对各分量进行价格预测,最后将各预测分量叠加得到预测值。以630/45导线的历史数据为样本,通过EMD-ARMA与EEMD-ARMA的预测结果进行对比及误差分析,验证了所采用的EEMD-ARMA算法较EMD-ARMA算法的预测精度更高,其预测结果对于工程造价管控和设备材料招投标具有一定的参考价值。The forecast of wire price in grid project is difficult and the accuracy is low due to the nonlinear and non- stationary property of wire price. Therefore, the EEMD-ARMA model was built. The empirical mode decomposition (EMD) was improved by using ensemble empirical mode decomposition (EEMD). The history price was decomposed to some smooth and periodic fluctuations components by EEMD, which was used as the input of autoregressive moving-average (ARMA) model to forecast the components' price. Finally, the forecast price was obtained by the superimposing of forecast components. Taking the history data of 630/45 wire as samples, the forecast results of EMD-ARMA and EEMD-ARMA was compared, as well as the errors were analyzed, whose results verified that the forecast result by EEMD-ARMA was better than the result by EMD-ARMA in forecast accuracy. The forecast results by applying EEMD-ARMA model have a certain referencial value to the project cost control and the equipment and material bidding.
关 键 词:集合经验模态分解 自回归滑动平均模型 电网工程导线价格 预测
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.220