检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南科技大学数学与计算科学学院,湘潭湖南411201
出 处:《数学进展》2013年第6期782-794,共13页Advances in Mathematics(China)
基 金:supported by NSFC(No.10771058,No.11071062);Natural Science Foundation of Hunan Province(No.10jj3065);Scientific Research Foundation of Hunan Provincial Education Department(No.10A033)
摘 要:设R是NI环且nil(R)为幂零理想,(S,≤)为严格全序幺半群且对任意8∈S,s≥0,ω:S→End(R)为compatible幺半群同态.本文证明了斜广义幂级数环[[R^(S,≤),ω]]是幂零p.p.环当且仅当环R是幂零P.P.环.同时还进一步证明了如果环R对弱零化子满足降链条件,则斜广义幂级数环[R^(S,≤),ω]]是弱APP环当且仅当环R是弱APP环.因此基环R的许多性质可以推广到斜广义幂级数环[[R^(S,≤),ω]上.Let R be an NI ring with nil(R) nilpotent, (S, ≤) a strictly totally ordered monoid satisfying the condition that 0≤s for all s G S, andω : S →End(R) be a compatible monoid homomorphism. Then the ring [[Rs,≤, ω]] of the skew generalized power series with coefficients in R and exponents in S is a nilpotent p.p.-ring if and only if R is a nilpotent p.p.-ring. Furthermore, if R satisfies the descending chain condition on weak annihilators, then [[RS'≤, ω]] is a weak APP-ring if and only if R is a weak APP-ring. Consequently, some properties of the base ring R can be profitably generalized to the skew generalized power series ring [[Rs'≤, ω]].
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.83.123