Bernstein n-Widths of Besov Embeddings on Lipschitz Domains  

Bernstein n-Widths of Besov Embeddings on Lipschitz Domains

在线阅读下载全文

作  者:Yue Wu LI Gen Sun FANG 

机构地区:[1]School of Mathematical Sciences, Hulunbeier University [2]School of Mathematical Sciences, Beijing Normal University

出  处:《Acta Mathematica Sinica,English Series》2013年第12期2283-2294,共12页数学学报(英文版)

基  金:supported by Natural Science Foundation of Inner Mongolia(Grant No.2011MS0103);supported by National Natural Science Foundation of China(Grant No.10671019)

摘  要:In this paper, using an equivalent characterization of the Besov space by its wavelet coefficients and the discretization technique due to Maiorov, we determine the asymptotic degree of the Bernstein n-widths of the compact embeddings Bq0s+t(Lp0(Ω))→Bq1s(Lp1(Ω)), t〉max{d(1/p0-1/p1), 0}, 1 ≤ p0, p1, q0, q1 ≤∞,where Bq0s+t(Lp0(Ω)) is a Besov space defined on the bounded Lipschitz domain Ω ? Rd. The results we obtained here are just dual to the known results of Kolmogorov widths on the related classes of functions.In this paper, using an equivalent characterization of the Besov space by its wavelet coefficients and the discretization technique due to Maiorov, we determine the asymptotic degree of the Bernstein n-widths of the compact embeddings Bq0s+t(Lp0(Ω))→Bq1s(Lp1(Ω)), t〉max{d(1/p0-1/p1), 0}, 1 ≤ p0, p1, q0, q1 ≤∞,where Bq0s+t(Lp0(Ω)) is a Besov space defined on the bounded Lipschitz domain Ω ? Rd. The results we obtained here are just dual to the known results of Kolmogorov widths on the related classes of functions.

关 键 词:Bernstein widths Besov spaces Lipschitz domains 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象