More about the Kernel Convergence and the Ideal Convergence  被引量:5

More about the Kernel Convergence and the Ideal Convergence

在线阅读下载全文

作  者:Xian Geng ZHOU Min ZHANG 

机构地区:[1]Department of Mathematics, Ningde Normal University

出  处:《Acta Mathematica Sinica,English Series》2013年第12期2367-2372,共6页数学学报(英文版)

基  金:supported by Plan Project of Education Department of Fujian Province(Grant No.JA11275)

摘  要:Let I 2N be an ideal and let XI = span{χI : I ∈ I}, and let pI be the quotient norm of l∞/XI. In this paper, we show first that for each proper ideal I 2N, the ideal convergence deduced by I is equivalent to pI-kernel convergence. In addition, let K = {x*oχ(·) : x*∈ p(e)}, where p(x) = lim supn→∞1/n(∑k=1n|x(k)|, and let Iμ = {A N : μ(A) = 0} for all μ = x*oχ(·) ∈ K. Then Iμ is a proper ideal. We also show that the ideal convergence deduced by the proper ideal Iμ, the p-kernel convergence and the statistical convergence are also equivalent.Let I 2N be an ideal and let XI = span{χI : I ∈ I}, and let pI be the quotient norm of l∞/XI. In this paper, we show first that for each proper ideal I 2N, the ideal convergence deduced by I is equivalent to pI-kernel convergence. In addition, let K = {x*oχ(·) : x*∈ p(e)}, where p(x) = lim supn→∞1/n(∑k=1n|x(k)|, and let Iμ = {A N : μ(A) = 0} for all μ = x*oχ(·) ∈ K. Then Iμ is a proper ideal. We also show that the ideal convergence deduced by the proper ideal Iμ, the p-kernel convergence and the statistical convergence are also equivalent.

关 键 词:Kernel convergence ideal convergence statistical convergence SEMINORM Banach space 

分 类 号:O153[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象