检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics, Ningde Normal University
出 处:《Acta Mathematica Sinica,English Series》2013年第12期2367-2372,共6页数学学报(英文版)
基 金:supported by Plan Project of Education Department of Fujian Province(Grant No.JA11275)
摘 要:Let I 2N be an ideal and let XI = span{χI : I ∈ I}, and let pI be the quotient norm of l∞/XI. In this paper, we show first that for each proper ideal I 2N, the ideal convergence deduced by I is equivalent to pI-kernel convergence. In addition, let K = {x*oχ(·) : x*∈ p(e)}, where p(x) = lim supn→∞1/n(∑k=1n|x(k)|, and let Iμ = {A N : μ(A) = 0} for all μ = x*oχ(·) ∈ K. Then Iμ is a proper ideal. We also show that the ideal convergence deduced by the proper ideal Iμ, the p-kernel convergence and the statistical convergence are also equivalent.Let I 2N be an ideal and let XI = span{χI : I ∈ I}, and let pI be the quotient norm of l∞/XI. In this paper, we show first that for each proper ideal I 2N, the ideal convergence deduced by I is equivalent to pI-kernel convergence. In addition, let K = {x*oχ(·) : x*∈ p(e)}, where p(x) = lim supn→∞1/n(∑k=1n|x(k)|, and let Iμ = {A N : μ(A) = 0} for all μ = x*oχ(·) ∈ K. Then Iμ is a proper ideal. We also show that the ideal convergence deduced by the proper ideal Iμ, the p-kernel convergence and the statistical convergence are also equivalent.
关 键 词:Kernel convergence ideal convergence statistical convergence SEMINORM Banach space
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.53.239