检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国石油大学(华东)信息与控制工程学院,山东青岛266580
出 处:《化工学报》2013年第12期4503-4508,共6页CIESC Journal
基 金:国家自然科学基金项目(61273160);山东省自然科学基金项目(ZR2011FM014)~~
摘 要:传统的主元分析(PCA)相似系数法没有充分利用数据的高阶统计量等有用的过程信息,导致故障识别效果较差。针对此问题,提出一种统计量模式分析(SPA)相似系数法。该方法首先使用SPA将原始数据转换到统计量空间中,然后在统计量空间中利用PCA获取主元方向,计算主元之间的相似性识别故障。在连续搅拌反应器(CSTR)过程上的仿真结果说明提出的SPA相似系数法比传统的PCA相似系数法能更有效地识别故障。The traditional principal component analysis (PCA) similarity factor method does not make full use of the higher-order statistics of the process data, which results in degraded fault identification performance. In order to solve this problem, a statistics pattern analysis (SPA) similarity factor method is proposed in this paper. Firstly, the original process data are transformed into the statistics space by using the SPA. Then, the PCA is adopted to obtain the principal component directions in the statistics space. Finally, the similarity between the principal components is calculated to identify faults. Simulation results on the continuous stirring tank reactor (CSTR) process show that the proposed SPA similarity factor method is more effective than the traditional PCA similarity factor method in terms of identifying faults.
关 键 词:统计量模式分析 PCA相似系数 故障检测 故障识别
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222