检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国科学:数学》2013年第11期1145-1164,共20页Scientia Sinica:Mathematica
基 金:国家自然科学基金(批准号:11271335)资助项目
摘 要:设d1,d2,...,dk是k个非负整数.若图G=(V,E)的顶点集V可剖分成k个子集V1,V2,...,Vk,使得对i=1,2,...,k由V i所导出的子图G[V i]的最大度至多为d i,则称G是(d1,d2,...,dk)-可染的.著名的Steinberg猜想断言,每个既没有4-圈又没有5-圈的平面图是(0,0,0)-可染的.对此猜想已经证明每个没有4至7-圈的平面图是(0,0,0)-可染的,但还没有发现有人证明每个没有4至6-圈的平面图是(0,0,0)-可染的.本文证明没有4至6-圈的平面图是(1,0,0)-可染的.Let d1, d2…… dk be k nonnegative integers. A graph G = (V, E) is improperly (d1,d2……, dk)- colorable, if the vertex set V of G can be partitioned into subsets V1, V2…… Vk such that the subgraph G[Vi] induced by Vi has maximum degree at most di for i = 1, 2…… k. In terms of improper colorability, the famous Steinberg Conjecture asserts that every planar graph with cycles of length neither 4 nor 5 is (0, 0, 0)-colorable. Towards this conjecture, it is known that every planar graph without cycles of length from 4 to 7 is (0, 0, 0)- colorable. However, it is unknown whether every planar graph without cycles of length from 4 to 6 is (0, 0, 0)- colorable. In this paper, we prove that planar graphs without cycles of length from 4 to 6 are (1, 0, 0)-colorable.
关 键 词:Steinberg猜想 非正常染色 坏圈 超延拓 权转移
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3