检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:SUN JiaChang
机构地区:[1]Laboratory of Computational Sciences,Institute of Software, Chinese Academy of Sciences
出 处:《Science China Mathematics》2013年第12期2677-2700,共24页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.60970089;61170075 and 91230109)
摘 要:Instead of most existing postprocessing schemes, a new preprocessing approach, called multi- neighboring grids (MNG), is proposed for solving PDE eigen-problems on an existing grid G(A). The linear or multi-linear element, based on box-splines, are taken as the first stage Khuh -λh/1Mh/1Uh. In this paper, the j-th stage neighboring-grid scheme is defined as Khuh λh/j Mh/j Uh = λh/j Mh/j Uh , where gh :- Mh/j-1 Kh/1 and Mhuh is to be found as a better mass distribution over the j-th stage neighboring-grid G(/k), and Kh/1 can be seen as an expansion of Kh on the j-th neighboring-grid with respect to the (j - 1)-th mass distribution Mh_l. It is shown that for an ODE model eigen-problem, the j-th stage scheme with 2j-th order B-spline basis can reach 2j-th order accuracy and even (2j + 2)-th order accuracy by perturbing the mass matrix. The argument can be extended to high dimensions with separable variable cases. For Laplace eigen-problems with some 2-D and 3-D structured uniform grids, some 2j-th order schemes are presented for j ≤ 3.Instead of most existing postprocessing schemes,a new preprocessing approach,called multineighboring grids(MNG),is proposed for solving PDE eigen-problems on an existing grid G(Δ).The linear or multi-linear element,based on box-splines,are taken as the frst stage Kh1Uh=λh1Mh1Uh.In this paper,the j-th stage neighboring-grid scheme is defned asKh jUh=λh j Mh jUh,where Kh j:=Mh j 1Kh1and Mh jUh is to be found as a better mass distribution over the j-th stage neighboring-gridG(Δ),and Kh jcan be seen as an expansion of Kh1on the j-th neighboring-grid with respect to the(j 1)-th mass distribution Mh j 1.It is shown that for an ODE model eigen-problem,the j-th stage scheme with 2j-th order B-spline basis can reach2j-th order accuracy and even(2j+2)-th order accuracy by perturbing the mass matrix.The argument can be extended to high dimensions with separable variable cases.For Laplace eigen-problems with some 2-D and 3-D structured uniform grids,some 2j-th order schemes are presented for j 3.
关 键 词:PDE eigen-problem discrete Rayleigh quotient multi-neighboring grids schemes B-SPLINES
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3