自动变速操纵系统稳态工况下非平稳随机信号的故障诊断技术研究  被引量:2

Research on Fault Diagnosis of Non-stationary Random Signals under ASCS's Steady State Condition

在线阅读下载全文

作  者:王滨[1] 刘海鸥[1] 彭建鑫[1] 苗成生 

机构地区:[1]北京理工大学机械与车辆学院,北京100081

出  处:《兵工学报》2013年第11期1366-1372,共7页Acta Armamentarii

基  金:国家高技术研究发展计划项目(2011AAllA252)

摘  要:提出了基于信号冗余关系的自动变速操纵系统(ASCS)稳态行驶工况非平稳随机信号多重故障检测和诊断策略。通过分析ASCS非平稳信号特性以及信号之间的冗余关系,提出故障检测和诊断策略设计原则:不可信原则、多故障兼容原则和概率原则,作为故障检测和诊断策略设计的指导思想。同时根据故障诊断结果的准确性和有效性特点将故障诊断结果划分为一级、二级、三级3种类型。通过分析ASCS稳态工况的先验知识,提出非平稳随机信号故障检测和诊断策略,实现发动机转速、变速箱输入轴转速、车速和车辆挡位信号之间单或多重故障诊断的功能。向实车数据中注入不同类型故障来检测故障诊断策略的完整性和正确性,试验结果证实了该方法的有效性和实用性。A multiple fault detection and diagnosis strategy of non-stationary random signals is presented for automatic shift control system (ASCS) , which is based on the redundancy relationship between sig- nals under the steady-state condition. The design principles of fault diagnosis strategy are put forward based on the characteristics of ASCS non-stationary random signals and the redundancy relationship between them. These principles, including credibility principle, fault compatible principle and probability principle, are the design guidelines of fault diagnosis strategy. According to the accuracy and efficiency of fault diagnosis results, the results are divided into three types. Then the fault detection and diagnosis strategy of non-stationary random signals is put forward on the basis of prior knowledge under the steady state condition of ASCS, which can realize the single fault or multiple fault diagnosis of engine speed, transmission input speed, vehicle speed and gear signal. Man-made fault is injected through the real vehicle test process to detect the integrity and validity of fault diagnosis strategy. The car data and test re- suits show that the method is effective and practical.

关 键 词:交通运输安全工程 非平稳随机信号 稳态工况 多重故障诊断 自动变速操纵系统 

分 类 号:U463.2[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象