检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院地理科学与资源研究所,北京100101
出 处:《地球信息科学学报》2013年第6期819-828,共10页Journal of Geo-information Science
基 金:国家自然科学基金青年科学基金项目(41101364);全国生态环境10年(2000-2010年)变化遥感调查与评估项目(STSN-04-08);中国科学院地理科学与资源研究所"一三五"战略科技计划项目(2012ZD010);资源与环境信息系统国家重点实验室自主部署创新研究计划资助项目(O88RA900KA)
摘 要:近地表气温是影响陆表过程的一项重要因素,中高分辨率的栅格化气温数据是生态环境、水文、水循环等模拟和分析的重要参数,获得准确和较高空间分辨率的栅格化气温数据对更好地理解陆地表面过程和全球变化等有非常重要的意义。本文提出一种基于气温与地形、植被等环境因子,以及地理位置的统计降尺度方法,以回归树模型建立气温与NDVI、DEM及地理位置之间的定量关系,将NCEP/NCAR近地表气温数据降尺度到公里级分辨率,并利用该方法得到2000年1月至2010年12月全国陆地范围ikm分辨率逐月月平均气温数据。最后,采用全国380个气象站点的观测数据对结果进行对比分析,结果表明:该方法得到的气温数据可以有效地反映全国陆地范围气温空间分布特点和月际变化趋势,验证结果的R2范围在0.861—0.95之间,RMSE范围在1.88-2.68℃之间。Near-surface air temperature is an important controlling parameter for land surface processes, and is critical to ecological, environmental and hydrological modeling. Temperature records observed at meteorological stations have been widely used, but there has been an increasing need for temperature data in grid for modeling purposes. Although grid temperature can be estimated from in-situ temperature records using interpolation algo- rithm, low accuracy have been reported due to limited ground stations and their clustering distribution, especially when there were insufficient sites to represent all land cover types and terrain conditions in the area. NCEP/ NCAR reanalysis project uses a frozen state-of-art global data assimilation system and a database as complete as possible. Although the NCEP/NCAR data has a coarse resolution (0.5 degree), it provides global, consistent, and long term estimation of climate variables. This paper presents a downscaling approach to derive monthly temper- ature at lkm resolution from the NCEP/NCAR by utilizing derived relationships between monthly aggregated NCEP/NCAR temperature and other ground elements, i.e., terrain, vegetation and geographic locations. Regres- sion tree model was chosen to detect the possible relationships. Monthly temperature with lkm resolution for China land area from 2000 to 2010 has been produced using the approach. The final predicted temperatures were compared with observed records at 380 meteorological stations in China. The results indicate that the down- scaled estimations can represent spatial distribution and trends and the magnitude of inter-month temperature with R2 ranging from 0.861 to 0.95, and RMSE from 1.88℃ to 2.681℃.
关 键 词:统计降尺度 月平均气温 NCEP NCAR NDVI DEM
分 类 号:P468.0[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229