检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国海洋大学海洋环境学院,山东青岛266003 [2]海军司令部航海保证部,北京100841 [3]海军出版社,天津300450
出 处:《海洋测绘》2013年第6期14-17,共4页Hydrographic Surveying and Charting
基 金:国家863计划项目(2009AA121405-05);国家自然科学基金项目(41274045;61071006);国家海洋局海底科学重点实验室开放基金(KLSG1002)
摘 要:基于格进行整周模糊度估计时,为保证最近向量问题的计算效率,通常需首先对格基进行规约变换。设计了基于Householder变换的LLL规约算法(H-LLL),算法通过利用分解得到的上三角矩阵来构造规约变换矩阵,从而实现格基的大小规约和长度规约。利用实测数据与经典LLL规约算法进行了比较,结果表明两种方法规约效果相同,H-LLL规约更加高效。In order to keep the calculation efficiency of closest vector problems in integer ambiguity estimation based on lattice, the lattice base is needed to be reduction-transformed previously. The design of H-LLL algorithm is based on Householder transformation, and the size reduction and length reduction of lattice base are realized through the upper triangular matrix produced by householder transformation to construct the reduction transformation matrix. The classic reduction algorithm on the basis of gram schmidt orthogonalization, is compared with H-LLL algorithm by using the measured data, and the result shows that the two methods have the same reduction effect, but H-LLL reduction method is more efficient.
关 键 词:整周模糊度 格基规约 LLL规约 GRAM Schmidt正交化 Householder变换
分 类 号:P228.4[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4