检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学的实践与认识》2013年第23期131-141,共11页Mathematics in Practice and Theory
摘 要:研究单机两组工件继列分批与平行分批混合排序.在问题中有两组工件J^A和J^B.A-工件可以在平行批中进行加工,B-工件可以在继列批中进行加工.对若干正则目标函数给出了多项式时间算法.主要结果如下:·排序问题1|s-p-batch,s(B),(∞,∞)|L_(max)在O(n_An_Bn)时间可解.·排序问题1|s-p-batch,s(B),(∞,b(B))|∑C_j在O(n_An_Bn)时间可解.·排序问题1|s-p-batch,p_j=1,s(B),(b(A),b(B))|∑w_jC_j在O(n_An_Bn)时间可解.·排序问题1|s-p-batch,s(B),(∞,b(B))|f_(max)可以在时间界为O(log(max_jf_j(M))×(nlogM+n_An_Bn))内可解.其中,M是工件完工时间的一个上界.This paper studies the two-family jobs serial-parallel mixed batch scheduling on a single machine. In the problem, we have two families of jobs jA and jB. The A- jobs can be processed in parallel batches and the B-jobs can be processed in serial batches. Polynomial-time algorithms are presented for some regular objective functions. The main results are as follows.. · The scheduling problem 1Is-p-batch, s(B), (∞, ∞)|Lmax can be solved in O(nAnBn) time. · The scheduling problem 1Is-p-batch, s(B), (∞, b(B))|∑ Cj can be solved in O(nAnBn) time. · The scheduling problem 1Is-p-batch, pC = 1, s(B), (b(A), b(B))|∑ Wj Cj can be solved in O(nAnBn) time. · The scheduling problem 1Is-p-batch, s(B), (∞, b(B))|fmax can be solved in O(log(max3 $3(M)) x (n log M + nAnsn)) time, where M is an upper bound of the completion times of the jobs.
分 类 号:O223[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28