基于自适应误差修正模型的概率神经网络及其在故障诊断中的应用  被引量:17

Probabilistic neural network based on adaptive error correction model and its application in failure diagnosis

在线阅读下载全文

作  者:高甜容[1,2] 于东[2] 岳东峰 

机构地区:[1]中国科学院大学,北京100039 [2]中国科学院沈阳计算技术研究所,辽宁沈阳110168 [3]北方信息控制集团有限公司,江苏南京211153

出  处:《计算机集成制造系统》2013年第11期2824-2833,共10页Computer Integrated Manufacturing Systems

基  金:“核高基”国家科技重大专项课题资助项目(2012ZX01029001-002)~~

摘  要:针对数控机床自身复杂性对故障诊断模型的需求,借助人工神经网络在故障诊断领域的优势,提出一种基于自适应误差修正模型的概率神经网络,以实现数控机床机械故障的实时诊断。针对概率神经网络由于未考虑模式间交错影响而导致判决界面有偏的问题,在概率神经网络的基础上设计自适应误差修正模型,通过对同类别错误分类样本进行自适应聚类并批量修正的过程,实现判决界面的重新规划。对双螺旋分类问题、IRIS分类问题的实验结果表明,该方法在分类准确率和模型泛化能力方面均优于概率神经网络方法和径向基概率神经网络方法,且训练速度和测试速度满足分类实时性需求。在数控机床故障诊断领域的应用表明,所提方法的故障模式识别准确率高,具有可行性和有效性。To meet the failure diagnosis requirements of complex Computer Numerical Control (CNC) machine,an Adaptive Error Correction Probabilistic Neural Network (AECPNN) method by using the advantages of artificial neural network in the field of failure diagnosis was put forward to diagnose real-time failure of CNC machine.Aiming at the problem that the biased judgment interface leaded by Probabilistic Neural Network (PNN) which didn't consider the crisscross influence among different patterns,an adaptive error correction model was proposed based on PNN.Through adaptive clustering and batch of correction for same category's false classified samples,the judge interface was re-planned.Experimental results of two-spirals-apart problem and IRIS problem showed that AECPNN method was superior to PNN and Radial Basis Probabilistic Neural Network (RBPNN) in aspects of classification accuracy rate and model generalization ability.In addition,the training and testing speeds of AECPNN could meet real-time demand of classification.Applications in the failure diagnosis of CNC machine demonstrated that the proposed method was feasible and effective due to high accuracy rate of failure pattern recognition.

关 键 词:故障诊断 概率神经网络 自适应误差修正 数控机床 

分 类 号:TP306[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象