An improved interpolating element-free Galerkin method for elasticity  被引量:4

An improved interpolating element-free Galerkin method for elasticity

在线阅读下载全文

作  者:孙凤欣 王聚丰 程玉民 

机构地区:[1]Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University [2]Faculty of Science, Ningbo University of Technology [3]Ningbo Institute of Technology, Zhejiang University

出  处:《Chinese Physics B》2013年第12期43-50,共8页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant No.11171208);the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)

摘  要:Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.

关 键 词:meshless method improved interpolating moving least-squares (ⅡMLS) method improved interpolating element-free Galerkin (ⅡEFG) method elasticity 

分 类 号:O343[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象