检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Traffic, Shijiazhuang Institute of Railway Technology [2]Department of Mathematics and Physics, Shijiazhuang Tiedao University
出 处:《Chinese Physics B》2013年第12期121-126,共6页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China(Grant Nos.11002093,11172183,and 11202142);the Science and Technology Fund of the Science and Technology Department of Hebei Province,China(Grant No.11215643)
摘 要:A novel model is proposed which comprises of a beam bridge subjected to an axial load and an infinite series of moving loads. The moving loads, whose distance between the neighbouring ones is the length of the beam bridge, coupled with the axial force can lead the vibration of the beam bridge to codimension-two bifurcation. Of particular concern is a parameter regime where non-persistence set regions undergo a transition to persistence regions. The boundary of each stripe represents a bifurcation which can drive the system off a kind of dynamics and jump to another one, causing damage due to the resulting amplitude jumps. The Galerkin method, averaging method, invertible linear transformation, and near identity nonlinear transformations are used to obtain the universal unfolding for the codimension-two bifurcation of the mid-span deflection. The efficiency of the theoretical analysis obtained in this paper is verified via numerical simulations.A novel model is proposed which comprises of a beam bridge subjected to an axial load and an infinite series of moving loads. The moving loads, whose distance between the neighbouring ones is the length of the beam bridge, coupled with the axial force can lead the vibration of the beam bridge to codimension-two bifurcation. Of particular concern is a parameter regime where non-persistence set regions undergo a transition to persistence regions. The boundary of each stripe represents a bifurcation which can drive the system off a kind of dynamics and jump to another one, causing damage due to the resulting amplitude jumps. The Galerkin method, averaging method, invertible linear transformation, and near identity nonlinear transformations are used to obtain the universal unfolding for the codimension-two bifurcation of the mid-span deflection. The efficiency of the theoretical analysis obtained in this paper is verified via numerical simulations.
关 键 词:mid-span deflection beam bridge infinite series of moving loads codimension-two bifurcation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188