Stability of operation versus temperature of a three-phase clock-driven chaotic circuit  

Stability of operation versus temperature of a three-phase clock-driven chaotic circuit

在线阅读下载全文

作  者:周继超 Hyunsik Son Namtae Kim Han Jung Song 

机构地区:[1]Department of Nano Systems Engineering, Inje University [2]Department of Electronic Engineering, Inje University [3]Center for Nano Manufacturing, Inje University

出  处:《Chinese Physics B》2013年第12期152-159,共8页中国物理B(英文版)

基  金:Project supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(Grant No.2011-0011698)

摘  要:We evaluate the influence of temperature on the behavior of a three-phase clock-driven metal–oxide–semiconductor (MOS) chaotic circuit. The chaotic circuit consists of two nonlinear functions, a level shifter, and three sample and hold blocks. It is necessary to analyze a CMOS-based chaotic circuit with respect to variation in temperature for stability because the circuit is sensitive to the behavior of the circuit design parameters. The temperature dependence of the proposed chaotic circuit is investigated via the simulation program with integrated circuit emphasis (SPICE) using 0.6-μm CMOS process technology with a 5-V power supply and a 20-kHz clock frequency. The simulation results demonstrate the effects of temperature on the chaotic dynamics of the proposed chaotic circuit. The time series, frequency spectra, bifurcation phenomena, and Lyapunov exponent results are provided.We evaluate the influence of temperature on the behavior of a three-phase clock-driven metal–oxide–semiconductor (MOS) chaotic circuit. The chaotic circuit consists of two nonlinear functions, a level shifter, and three sample and hold blocks. It is necessary to analyze a CMOS-based chaotic circuit with respect to variation in temperature for stability because the circuit is sensitive to the behavior of the circuit design parameters. The temperature dependence of the proposed chaotic circuit is investigated via the simulation program with integrated circuit emphasis (SPICE) using 0.6-μm CMOS process technology with a 5-V power supply and a 20-kHz clock frequency. The simulation results demonstrate the effects of temperature on the chaotic dynamics of the proposed chaotic circuit. The time series, frequency spectra, bifurcation phenomena, and Lyapunov exponent results are provided.

关 键 词:chaotic circuit nonlinear functions temperature effect bifurcation Lyapunov exponent 

分 类 号:O415.5[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象