Micro-plasticity Constitutive Model Taking Account of Size Effects for Pure Aluminum by Microindentation  

Micro-plasticity Constitutive Model Taking Account of Size Effects for Pure Aluminum by Microindentation

在线阅读下载全文

作  者:WANG Chengpeng LI Fuguo CHEN Bo WANG Lei 

机构地区:[1]State Key Laboratory of Solidification Processing,Northwestern Polytechnical University [2]College of Materials Science and Engineering,Taiyuan University of Technology

出  处:《Journal of Wuhan University of Technology(Materials Science)》2013年第6期1101-1106,共6页武汉理工大学学报(材料科学英文版)

基  金:Fund by the Aeronautical Science Foundation of China(No.2011ZE53059);the National Natural Science Foundation of China(No.51275414)

摘  要:The macro-plasticity power function constitutive model (MPFCM), the modified macro- plasticity power function constitutive model (MMPFCM) and the micro-plasticity constitutive model (MCM) taking the material intrinsic length were established to characterize the microindentation size effects of pure aluminum, respectively. The experimental results indicated MPFCM only determined precisely in the great indentation load. While a modified one named MMPFCM was subsequently established taking account of the parameters variation with the increase of indentation depth. The conventional dimensional analysis method was employed to determine the strength coefficient K and the strain hardening exponent n of this modified model. And then MCM taking account of size effects was proposed based on the Taylor dislocation model. The first- order steepest gradient descent method was adopted to obtain the material intrinsic length for the geometrically necessary dislocations. The parameters of MCM were identified by using the UMAT subroutine of ABAQUS software. The average absolute relative error of MCM is relatively lower than that of the macro-one. Although the precision of the modified one is also high, the applied scope is limited, only for the microindentation material. In addition, the intrinsic length 5.09 bun of pure aluminum is also obtained based on the strain gradient theory.The macro-plasticity power function constitutive model (MPFCM), the modified macro- plasticity power function constitutive model (MMPFCM) and the micro-plasticity constitutive model (MCM) taking the material intrinsic length were established to characterize the microindentation size effects of pure aluminum, respectively. The experimental results indicated MPFCM only determined precisely in the great indentation load. While a modified one named MMPFCM was subsequently established taking account of the parameters variation with the increase of indentation depth. The conventional dimensional analysis method was employed to determine the strength coefficient K and the strain hardening exponent n of this modified model. And then MCM taking account of size effects was proposed based on the Taylor dislocation model. The first- order steepest gradient descent method was adopted to obtain the material intrinsic length for the geometrically necessary dislocations. The parameters of MCM were identified by using the UMAT subroutine of ABAQUS software. The average absolute relative error of MCM is relatively lower than that of the macro-one. Although the precision of the modified one is also high, the applied scope is limited, only for the microindentation material. In addition, the intrinsic length 5.09 bun of pure aluminum is also obtained based on the strain gradient theory.

关 键 词:constitutive model size effects pure aluminum MICROINDENTATION 

分 类 号:TB302[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象