基于改进的符号转移熵的心脑电信号耦合研究  被引量:5

Coupling analysis of electrocardiogram and electroencephalogram based on improved symbolic transfer entropy

在线阅读下载全文

作  者:吴莎[1] 李锦[2] 张明丽[3] 王俊[1] 

机构地区:[1]南京邮电大学,图像处理与图像通信江苏省重点实验室,南京210003 [2]陕西师范大学,物理学与信息技术学院,西安710062 [3]西安市第一医院,干部病房,消化专业西安710002

出  处:《物理学报》2013年第23期435-440,共6页Acta Physica Sinica

基  金:国家自然科学基金(批准号:61271082;61201029;61102094);江苏省自然科学基金(批准号:BK2011759;BK2011565)资助的课题~~

摘  要:试图探究动力系统中的耦合关系一直以来都是国内外众多学者关注的热点,传统的时间序列符号化分析方法会使研究结果受序列非平稳性的严重影响,本文在原有转移熵的研究基础上,应用粗粒化提取,经过理论与实验的分析,发现心脑电信号耦合研究中的转移熵值在不同提取情况下对应不同的分布趋势,并选择效果最好的信号数据提取方法用在其后的应用分析中.此外,对时间序列符号化方法提出改进,采用动态的自适应分割方法.实验结果表明,无论清醒期还是睡眠期,改进的符号转移熵算法观测分析到的心脑电信号耦合作用更显著,能更好的捕捉到信号中的动态信息、系统动力学复杂性的改变,更利于医学临床实践应用中的检测,在分析非平稳的时间序列上具有更好的效果.Exploration of the coupling relationship in dynamical system has always been a hot topic of many scholars at home and abroad, the traditional symbolic dynamics analysis method may lead to the results from the serious effect of non-stationary time series. This paper employs coarse graining extraction based on research of original transfer entropy. Through theoretical and experimental analysis, we find that the results of transfer entropy have different distribution trend under different extraction conditions in the coupling analysis of electroencephalogram and electrocardiogram. We choose the best effect of signal data extraction method and apply it to the later application analysis. Furthermore, this paper proposes improvement on the method of time series symbolization, using dynamic adaptive segmentation method. The experimental results show that the whether waking period or sleeping stage, coupling between electroencephalogram and electrocardiogram is more significant when using improved symbolic transfer entropy algorithm. It is also better to capture the dynamic information of the signal and the change of complexity of system dynamics, which is more conductive to clinical testing in practical application and has a better effect on the analysis of non-stationary time series.

关 键 词:心脑电信号 粗粒化 符号转移熵 基本尺度 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象