检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周雨青[1]
机构地区:[1]东南大学物理系,南京211189
出 处:《Journal of Southeast University(English Edition)》2013年第4期456-462,共7页东南大学学报(英文版)
基 金:The National Natural Science Foundation of China(No.11047005);the Science Foundation of Southeast University
摘 要:Due to the negligible non-perturbation effect in the low-energy region, quantum chromodynamics (QCD) is limited to be applied to hadron problems in particle physics. However, QED has mature non-perturbation models which can be applied to Fermi acting-energy between quark and gluon. This paper applies quantum electrodynamics in 2 + 1 dimensions (QED3) to the Fermi condensation problems. First, the Dyson-Schwinger equation which the fermions satisfy is constructed, and then the Fermi energy gap is solved. Theoretical calculations show that within the chirality limit, there exist three solutions for the energy gap; beyond the chirality limit, there are two solutions; all these solutions correspond to different fermion condensates. It can be concluded that the fermion condensates within the chirality limit can be used to analyze the existence of antiferromagnetic, pseudogap, and superconducting phases, and two fermion condensates are discovered beyond the chirality limit.由于低能区域内的非微扰效应不能忽略,使得QCD在处理粒子物理中的强子问题时非常困难,而QED有较成熟的非微扰模型,可以很好地处理夸克和胶子传播子在费米作用能方面的相关问题,因此本文采用QED3来处理费米凝聚问题.首先构建费米子所满足的Dyson-Schwinger方程,然后求解费米能隙.理论计算表明,在手征极限下该能隙方程存在3个解,而在超越手征极限下则存在2个解,这些解都对应于不同的费米凝聚.手征极限下的费米凝聚可用来分析3个相的存在,即反铁磁相、赝能级和超导态.而在超越手征极限下,发现存在2个费米子凝聚.
关 键 词:Dyson-Schwinger equation chiral limit beyond chiral limit FERMION CONDENSATE multiple solutions quantum electrodvnamics in 2 + 1 dimensions (OED3)
分 类 号:O572.24[理学—粒子物理与原子核物理] O413.2[理学—物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117