检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军航空工程学院兵器科学与技术系,山东烟台264001
出 处:《计算机测量与控制》2013年第12期3231-3233,3242,共4页Computer Measurement &Control
基 金:武器装备预研基金资助项目(9140A27020212JB14311)
摘 要:针对模拟电路的多类故障诊断问题,提出一种基于平衡决策树(Balanced Decision Tree,BDT)相关向量机(Relevance Vector Machine,RVM)的故障诊断方法;综合考虑类内紧密性和类间分散性,建立了一种类的可分性度量方法,并根据不同类划分的可分度大小优化确定BDT结构,通过在BDT各个决策节点构造RVM二类分类器实现RVM的多类分类;故障诊断实验结果表明:该方法在训练效率、诊断效率和诊断精度等方面的综合性能优于已有的RVM多类故障诊断方法。Aiming at the problem of multi-class fault diagnosis for analog circuits,an approach based on balanced decision tree(BDT) relevance vector machine(RVM)was proposed.The class tightness and inter-class dispersion were considered synthetically to establish the separability measure.The distribution of BDT nodes was optimized according to the established separability measure,and then the structure of BDT was determined.RVMs were used to make binary classification at every node,which made multi-class classification realized.The experimental results show that the proposed approach has higher training efficiency,diagnostic efficiency and accuracy than the existing RVM approaches for multi-fault diagnosis.
关 键 词:模拟电路 多类故障诊断 平衡决策树 相关向量机 可分性度量
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.219