检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上饶职业技术学院信息工程系,江西上饶334109
出 处:《科技广场》2013年第10期18-21,共4页Science Mosaic
摘 要:在多目标最优化问题的研究中,围绕最优解涌现了很多成果,产生了不少解的概念[2]。对于通常的单目标最优化问题解的唯一性以及稳定性,也有过一些通有性的研究成果。对于多目标最优化问题解的稳定性,Yu[3]曾给出了一个通有稳定性结果,Xiang[4]也曾给出了当权因子,权因子和目标函数变化时加权解的稳定性结果。鉴于在实际运用中,加权方法和加权解的作用突出,因此研究加权解的稳定性具有重要意义。在本文中,将在Xiang的基础上研究引入计算机一些应用知识当权因子,目标函数和约束集合都变化时多目标优化加权解的稳定性,最后通过计算机模拟阐述现实中的一个例子说明稳定的加权解在现实应用中如何选择满意的解要依实际情况而定。In the study of multi-objective optimization, there emerged a lot of achievements and concepts con- cerning the optimal solution. There has also been some universal achievements for the uniqueness and stability of the common single objective optimization problems. For the stability of multi-objective optimization solution, Yu once gave out a general stability results, and Xiang was also given out the stability results of weighted solution when the power factor, the weight factor and the objective function change. The research on stability of weighted solution has an important significance because of the significance of the weighted method and the weighted solu- tion in practical application. In this paper, based on the research ofXiang t4], we introduce some computer applica- tion knowledge and study on the stability of multi-objective optimization weighted solution when the power factor, the weight factor and the objective function change. Finally, through an example in reality simulation elaborated by computer, we know that it is the real situation that decides how the stable weighted solution chooses a satisfied so- lution in real application.
分 类 号:O225[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117