Efect of residual Al content on microstructure and mechanical properties of Grade B+Steel for castings for locomotives  

Efect of residual Al content on microstructure and mechanical properties of Grade B+Steel for castings for locomotives

在线阅读下载全文

作  者:Wang Kaifeng Guo Erjun Cao Guojian Wang Liping Feng Yicheng Jiang Wenyong Tao Chunguo 

机构地区:[1]College of Materials Science and Engineering, Harbin University of Science and Technology [2]Qiqihar Railway Rolling Stock (Group) Co., Ltd.

出  处:《China Foundry》2013年第6期391-395,共5页中国铸造(英文版)

基  金:financially supported by the Heilongjiang Province Natural Science Foundation(QC2010110)

摘  要:The bogie made of Grade B+ steel is one of the most important parts of heavy haul trains. Some accidents were found to be the result of fracture failure of the bogies. It is very important to find the reason why the fracture failure occurred. Because AI was added for the final deoxidation during the smelting process of the Grade B+Steel, residual AI existed to some extent in the castings. High residual AI content in the bogie casting was presumed to be the reason for the fracture. In this work, the influence of residual AI content in the range of 0.015wt.% to 0.3wt.% on the microstructure and mechanical properties of the Grade B+ Steel was studied. The experimental results showed that when the residual AI content is between 0.02wt.% and 0.20wt.%, the mechanical properties of the steel meet the requirements of technical specification for heavy haul train parts, and the fracture is typical plastic fractures. If the residual AI content is less than 0.02wt.%, the microstructures are coarse, and the mechanical properties can not meet the demand of bogie steel castings. When the residual AI content is more than 0.2wt.%, the elongation, reduction of area, and low-temperature impact energy markedly deteriorate. The fracture mode then changes from plastic fracture to cleavage brittle fracture. Therefore, the amount of AI addition for the final deoxidation during the smelting process must be strictly controlled. The optimum addition amount needs to be controlled within the range of 0.02wt.% to 0.20wt.% for the Grade B+Steel.The bogie made of Grade B+ steel is one of the most important parts of heavy haul trains. Some accidents were found to be the result of fracture failure of the bogies. It is very important to find the reason why the fracture failure occurred. Because Al was added for the final deoxidation during the smelting process of the Grade B+Steel, residual Al existed to some extent in the castings. High residual Al content in the bogie casting was presumed to be the reason for the fracture. In this work, the influence of residual Al content in the range of 0.015wt.% to 0.3wt.% on the microstructure and mechanical properties of the Grade B+ Steel was studied. The experimental results showed that when the residual Al content is between 0.02wt.% and 0.20wt.%, the mechanical properties of the steel meet the requirements of technical specification for heavy haul train parts, and the fracture is typical plastic fractures. If the residual Al content is less than 0.02wt.%, the microstructures are coarse, and the mechanical properties can not meet the demand of bogie steel castings. When the residual Al content is more than 0.2wt.%, the elongation, reduction of area, and low-temperature impact energy markedly deteriorate. The fracture mode then changes from plastic fracture to cleavage brittle fracture. Therefore, the amount of Al addition for the final deoxidation during the smelting process must be strictly controlled. The optimum addition amount needs to be controlled within the range of 0.02wt.% to 0.20wt.% for the Grade B+Steel.

关 键 词:BOGIE Grade B+Steel AI content mechanical properties 

分 类 号:TG142.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象