LTE系统中的空间复用MIMO技术  被引量:2

MIMO SPATIAL MULTIPLEXING IN LTE SYSTEM

在线阅读下载全文

作  者:刘金铸[1] 薛婷[2] 

机构地区:[1]南京信息工程大学电子与信息工程学院,江苏南京210044 [2]南京信息工程大学信息与控制学院,江苏南京210044

出  处:《计算机应用与软件》2013年第12期137-139,169,共4页Computer Applications and Software

基  金:江苏省工业支撑计划项目(BE2011195)

摘  要:考虑到用户对LTE(Long Term Evolution)系统大容量和高速率的需要,采用了空间复用多输入多输出(MIMO)技术。在对LTE下行MIMO技术的传统接收算法研究的基础上提出一种改进算法。该算法调整排序干扰逐次消去(OSIC)算法的传统检测顺序,采用混合顺序检测。首先逆序检测出最弱信号层,并根据遍历搜索的思想对该层信号进行遍历,然后正序检测剩余信号层,利用最小距离准则来确定发送数据矢量。以QPSK和16QAM调制方式为例,计算机仿真验证了改进算法有效抑制了迭代检测过程中的差错传播,检测性能与最大似然(ML)算法检测效果一致,同时具有较低的计算复杂度,在检测性能与复杂度之间给出了很好的折衷。In consideration of the needs of users on LTE system for large capacity and high speed, the multiple-input and multiple-output (MIMO) spatial multiplexing technology is adopted. We bring forward an improved algorithm in the paper based on studying traditional recep- tion algorithms for LTE downlink MIMO technology. This algorithm makes adjustments on traditional detection sequence of ordered successive interference cancellation (OSIC) algorithm, and adopts hybrid sequence detection. First it detects the weakest signal layer in reverse order, traverses the single layer according to the concept of traversal search ; then it detects the remaining signal layers in positive sequence, and uti- lises the minimum distance criterion to determine and transmit the data vectors. Taking QPSK and 16QAM modulation means as examples, the computer simulation verifies that the improved algorithm effectively restrains the error propagation in the progress of iterative detection, and the detection performance is in accord with the detection results of maximum likelihood (ML) algorithm at low computational complexity. An appropriate trade-off between detection performance and computation complexity is obtained by this improved algorithm.

关 键 词:LTE空间复用MIMO 排序干扰逐次消去 混合检测顺序 最大似然 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象