机构地区:[1]上海师范大学生命与环境科学学院,上海200234 [2]九段沙湿地国家级自然保护区管理署,上海200136
出 处:《浙江大学学报(农业与生命科学版)》2013年第6期621-628,共8页Journal of Zhejiang University:Agriculture and Life Sciences
基 金:国家自然科学基金资助项目(31070479);上海市科学技术委员会基础研究重点项目(10JC1412100);上海市教育委员会科技创新重点项目(06ZZ20;10ZZ81);国家出入境检验检疫局科研项目(200810787);上海市教育委员会重点学科建设项目(J50401);上海市浦东新区科技发展基金创新资金项目(2011年专项)
摘 要:基于12种环境因子和草胡椒(Peperomia pellucida)在全球649个地理分布记录,应用MaxEnt模型和ArcGis 9.3软件,定量地预测我国新外来入侵植物草胡椒在我国的潜在分布区域和风险等级.结果表明:通过接受者操作特征(receiver operating characteristics,ROC)曲线分析法的验证,训练数据和验证数据的曲线下面积(area under the ROC curve,AUC)高达0.956和0.963,表明预测效果比较好;发现最湿月份雨量、昼夜温差与年温差比值、最冷季度平均温度、最冷季度雨量、海拔等是影响草胡椒入侵风险的主要环境因素.此外,提出了入侵风险综合评估的计算方法,按草胡椒在我国34个省区的入侵风险指数,将我国分成4个区域:高危风险区(台湾、香港、澳门、广东、广西和海南),中度风险区(上海、福建和云南),低风险区(浙江、湖北、江苏、安徽、江西、西藏、湖南、四川、贵州)和非适生区(内蒙古、北京、黑龙江、吉林、天津、宁夏、山东、山西、新疆、河北、河南、甘肃、辽宁、重庆、陕西和青海).目前,草胡椒的实际分布远未达其最大潜在分布范围,因此应该重视其危害性,加强监测和综合管理.In recent years, new alien plants have constantly been invading China as a result of an increase of foreign exchanges. Peperomia pellucida (L.) Kunth, a species that originated from tropical America, is one of the alien species recently found in Shanghai. Its potential geographical distribution range and habitats of the species are still unknown. Scientists have applied a variety of ecological niche models to predict the risk of exotic plant invasions in China. Among these ecological niche models, maximum entropy (MaxEnt) model has higher accuracy of predicted results with small sample size. According to 12 environmental variables from the global climate environment database (http://www. worldclim.org/) and 649 occurrence records of P. pellucida in the world from the global biodiversity database(http://data.gbif. org/welcome, htm) and the Chinese Virtual Herbarium (http://www. cvh. org. en/cms/), a prediction of P. pellucida potential distribution was conducted using MaxEnt model and AreGis 9.3 software. In this prediction, 12 environmental variables were used, including precipitation of wettest month, mean diurnal temperature range, isothermality, precipitation of warmest quarter, mean temperature of coldest quarter, variance in precipitation seasonality, precipitation of coldest quarter, temperature annual range, altitude, precipitation of driest month, mean temperature of warmest quarter, and mean temperature of driest quarter. When modeling, the occurrence data and environmental variables were firstly imported into the MaxEnt, and 75% of the occurrence data to predict the risk (training data) and the other (testing data) to test the accuracy were used. The raster layer of P. pellucida was gotten in the global potential distribution in ASCII format, then was imported into ArcGis for further analyses, and the potential suitable areas of P. pellucida in China was gotten. Finally, the result was confirmed by the ROC (receiver operating characteristics) curve analytical metho
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...