Synthesis and Properties of Melt Processed Poly(thiourea-azo-sulfone)/Carbon Nanotubes Nanocomposites  

Synthesis and Properties of Melt Processed Poly(thiourea-azo-sulfone)/Carbon Nanotubes Nanocomposites

在线阅读下载全文

作  者:Ayesha Kausar 

机构地区:[1]Nanosciences and Catalysis Division, National Centre for Physics, Quaid-i-Azam University Campus

出  处:《Chinese Journal of Polymer Science》2014年第1期64-72,共9页高分子科学(英文版)

摘  要:An aromatic azo-polymer, poly(thiourea-azo-sulfone) (PTAS), has been prepared using 4-(4- aminophenylsulfonyl)benzenamine and diazonium salt solution of 2,6odiaminopyridine. PTAS was easily processable using polar solvents and had high molar mass 63 × 103 g.mo1-1 according to GPC. Mechanically and thermally stable and electrically conducting polymer/CNTs nano-composites were obtained via melt processing technique. Fine distribution of CNTs in a polymer matrix performed an essential role in the preparation of polymer/CNTs nano-composites based on interfacial interaction between CNTs and polymer matrix. Scanning electron micrographs showed good dispersion of filler and adhesion of matrix on the surface of nanotubes. Accordingly, increasing the amount of CNTs from 0.1 wt% to 5 wt% increased the electrical conductivity from 2.99 S.cm-1 to 3.56 S.cm-1. Mechanical strength of functional nanotubes-based hybrids was enhanced from 43.22 MPa to 65.02 MPa compared with that of hybrids with non-functional filler in matrix 37.21 MPa. A rapport between nanotube loading and thermal stability of the materials was also observed. 10% gravimetric loss temperature was increased from 528 ~C to 578 ~C, while glass transition was improved from 241 ℃ to 271 ℃. Adding up of small quantity of functional CNTs strongly affected the tensile, electrical and thermal properties of materials. Improvement of the physical properties of CNT-reinforced polymer nano-composites was ascribed to the melt processing technique.An aromatic azo-polymer, poly(thiourea-azo-sulfone) (PTAS), has been prepared using 4-(4- aminophenylsulfonyl)benzenamine and diazonium salt solution of 2,6odiaminopyridine. PTAS was easily processable using polar solvents and had high molar mass 63 × 103 g.mo1-1 according to GPC. Mechanically and thermally stable and electrically conducting polymer/CNTs nano-composites were obtained via melt processing technique. Fine distribution of CNTs in a polymer matrix performed an essential role in the preparation of polymer/CNTs nano-composites based on interfacial interaction between CNTs and polymer matrix. Scanning electron micrographs showed good dispersion of filler and adhesion of matrix on the surface of nanotubes. Accordingly, increasing the amount of CNTs from 0.1 wt% to 5 wt% increased the electrical conductivity from 2.99 S.cm-1 to 3.56 S.cm-1. Mechanical strength of functional nanotubes-based hybrids was enhanced from 43.22 MPa to 65.02 MPa compared with that of hybrids with non-functional filler in matrix 37.21 MPa. A rapport between nanotube loading and thermal stability of the materials was also observed. 10% gravimetric loss temperature was increased from 528 ~C to 578 ~C, while glass transition was improved from 241 ℃ to 271 ℃. Adding up of small quantity of functional CNTs strongly affected the tensile, electrical and thermal properties of materials. Improvement of the physical properties of CNT-reinforced polymer nano-composites was ascribed to the melt processing technique.

关 键 词:Poly(thiourea-azo-sulfone) Melt processing Tensile strength Thermal stability Electrical conductivity. 

分 类 号:TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象