各向异性介质中两种载流曲线极点的磁场  

Magnetic Field at Poles of Two Current-Carrying Curves in Anisotropic Medium

在线阅读下载全文

作  者:明杨[1] 王建成[1] 苏武浔[1] 

机构地区:[1]华侨大学电子工程系,泉州362011

出  处:《华侨大学学报(自然科学版)》2000年第4期405-409,共5页Journal of Huaqiao University(Natural Science)

基  金:国家自然科学基金资助项目 ;福建省自然科学基金资助项目

摘  要:利用各向异性磁介质中毕奥 -萨伐尔定律的极坐标形式 ,求出用极坐标方程表示的载流蔓叶线和三叶玫瑰线在极点产生的磁场 .它为求解载流曲线在各向异性磁介质中的磁场提供范例 .Since Cartesian coordinate form of Biot Savart law in anisotropic magnetic medium has been derived from field theory of electric network theory, the polar coordinate form of the law can further be derived and magnetic field at the focus of conical curve as expressed by polar coordinate equation r=r(θ) can thus be solved.The problem that is difficult to be solved by Cartesian coordinate form of the law has been solved.By continuously using polar coordinate form of Biot Savart law in anisotropic magnetic medium,the authors solve here magnetic field produced at the pole by current carrying cissoid and trefoil as expressed by polar coordinate equation.Examples are offered here for solving magnetic field in anisotropic magnetic medium.

关 键 词:磁场 载流曲线 极点 各向异性磁介质 极坐标方程 

分 类 号:O441.4[理学—电磁学] TM153.1[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象