检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《华侨大学学报(自然科学版)》2000年第4期405-409,共5页Journal of Huaqiao University(Natural Science)
基 金:国家自然科学基金资助项目 ;福建省自然科学基金资助项目
摘 要:利用各向异性磁介质中毕奥 -萨伐尔定律的极坐标形式 ,求出用极坐标方程表示的载流蔓叶线和三叶玫瑰线在极点产生的磁场 .它为求解载流曲线在各向异性磁介质中的磁场提供范例 .Since Cartesian coordinate form of Biot Savart law in anisotropic magnetic medium has been derived from field theory of electric network theory, the polar coordinate form of the law can further be derived and magnetic field at the focus of conical curve as expressed by polar coordinate equation r=r(θ) can thus be solved.The problem that is difficult to be solved by Cartesian coordinate form of the law has been solved.By continuously using polar coordinate form of Biot Savart law in anisotropic magnetic medium,the authors solve here magnetic field produced at the pole by current carrying cissoid and trefoil as expressed by polar coordinate equation.Examples are offered here for solving magnetic field in anisotropic magnetic medium.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26