Resource Virtualization Model Using Hybrid-graph Representation and Converging Algorithm for Cloud Computing  

Resource Virtualization Model Using Hybrid-graph Representation and Converging Algorithm for Cloud Computing

在线阅读下载全文

作  者:Quan Liang Yuan-Zhuo Wang Yong-Hui Zhang 

机构地区:[1]School of Information Sciences and Engineering,Fujian University of Technology [2]Institute of Computing Technology,Chinese Academy of Sciences

出  处:《International Journal of Automation and computing》2013年第6期597-606,共10页国际自动化与计算杂志(英文版)

基  金:supported by National Natural Science Foundation of China(No.61101139);Natural Science Foundation of Fujian Province(Nos.2012J01244 and 2012J01243);Hunan Provincial Project of Science and Technology(No.2013FJ3090)

摘  要:Cloud computing can provide a great capacity for massive computing, storage as well as processing. The capacity comes from the cloud computing system itself, which can be likened to a virtualized resource pool that supports virtualization applications as well as load migration. Based on the existing technologies, the paper proposes a resource virtualization model (RVM) utilizing a hybrid-graph structure. The hybrid-graph structure can formally represent the critical entities such as private clouds, nodes within the private clouds, and resource including its type and quantity. It also provides a clear description of the logical relationship and the dynamic expansion among them as well. Moreover, based on the RVM, a resource converging algorithm and a maintaining algorithm of the resource pool which can timely reflect the dynamic variation of the private cloud and resource are presented. The algorithms collect resources and put them into the private cloud resource pools and global resource pools, and enable a real-time maintenance for the dynamic variation of resource to ensure the continuity and reliability. Both of the algorithms use a queue structure to accomplish functions of resource converging. Finally, a simulation platform of cloud computing is designed to test the algorithms proposed in the paper. The results show the correctness and the reliability of the algorithms.Cloud computing can provide a great capacity for massive computing, storage as well as processing. The capacity comes from the cloud computing system itself, which can be likened to a virtualized resource pool that supports virtualization applications as well as load migration. Based on the existing technologies, the paper proposes a resource virtualization model (RVM) utilizing a hybrid-graph structure. The hybrid-graph structure can formally represent the critical entities such as private clouds, nodes within the private clouds, and resource including its type and quantity. It also provides a clear description of the logical relationship and the dynamic expansion among them as well. Moreover, based on the RVM, a resource converging algorithm and a maintaining algorithm of the resource pool which can timely reflect the dynamic variation of the private cloud and resource are presented. The algorithms collect resources and put them into the private cloud resource pools and global resource pools, and enable a real-time maintenance for the dynamic variation of resource to ensure the continuity and reliability. Both of the algorithms use a queue structure to accomplish functions of resource converging. Finally, a simulation platform of cloud computing is designed to test the algorithms proposed in the paper. The results show the correctness and the reliability of the algorithms.

关 键 词:Cloud computing resource virtualization hybrid graph resource converging simulation. 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象