检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:康莉[1] 谢维信[1] 黄建军[1] 黄敬雄[2]
机构地区:[1]深圳大学ATR国防科技重点实验室,广东深圳518060 [2]防空兵指挥学院,河南郑州450052
出 处:《信号处理》2013年第11期1560-1567,共8页Journal of Signal Processing
基 金:总装预研项目(*******0602);国家科技支撑计划(2011bah24b12);高等学校博士学科点专项科研基金(20124408110002)
摘 要:本文对无线传感器网络中分布式压缩感知的关键技术进行了详细阐述。首先,简要论述了压缩感知方法的基本原理;其次,分析了无线传感器网络中的分布式压缩感知技术与单个信号的压缩感知技术的区别,针对无线传感器网络中联合稀疏模型的建立、分布式信源编码以及联合稀疏信号的重构技术等问题进行了详细讨论;分析了在无线传感器网络的实际应用中,联合稀疏模型、分布式信源编码方式及联合稀疏信号重构方法的性能。最后,对无线传感器网络中分布式压缩感知技术的未来研究方向进行了展望。This paper presents some key problems of the distributed compressive sensing for wireless sensor network (WSN) in detail.At present,compressive sensing technique has been becoming a hot spot all over the world because of its excellent performance for signal processing.In this paper,we firstly present the original compressive sensing technique for single signal in brief.Secondly,we discuss the application of compressive sensing in WSN.First of all,it analysises the difference between distributed compressive sensing technique and compressive sensing technique for single signal.The Joint sparsity models,distributed source coding and recovery of joint sparsity signals are discussed in detail for wireless sensor networks in this paper.Then,it discusses several popular joint sparsity models for WSN and explains their applications in practice.On the other side,the performance and efficiency of distributed source coding and recovery of joint sparsity signals are analysed.At last,we introduce the future challenges of distributed compressive sensing technique.
分 类 号:TN391[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222