检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜承志[1,2] 孙强[1] 刘英[1] 梁静秋[3] 安岩[1,2] 刘兵[1,2]
机构地区:[1]中国科学院长春光学精密机械与物理研究所光电技术研发中心,吉林长春130033 [2]中国科学院大学,北京100049 [3]中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室,吉林长春130033
出 处:《光谱学与光谱分析》2014年第1期103-107,共5页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(60977001);吉林省科技厅项目(20106015;20125092);吉林省与中国科学院合作长吉图开发开放先导区科技创新合作专项(2011CJT0004)资助
摘 要:拉曼谱峰识别是拉曼定性分析中的关键技术之一,针对现有拉曼谱峰识别方法中存在的缺陷和不足提出了一种双尺度相关拉曼光谱谱峰识别方法,即采用两个尺度下的相关系数与局部信噪比相结合来实现拉曼谱峰识别。利用MATLAB对所提算法与传统的连续小波变换法进行了对比分析,并通过实测拉曼光谱进行验证。分析结果:双尺度相关法识别一幅拉曼谱的平均时间为0.51s,连续小波变换法为0.71s;当谱峰信噪比≥6时(现代拉曼光谱仪器均可达到较高的信噪比),双尺度相关法的谱峰识别准确率高于99%,连续小波变换法的谱峰识别准确率小于84%,且双尺度相关法谱峰位置识别误差的均值与标准差均要小于连续小波变换法。通过仿真对比分析和实验验证表明:双尺度相关法具有无需人工干预,无需做去噪及去背景等预处理操作,识别速度快,识别准确率高等特点,是一种切实可行的拉曼谱峰识别方法。The authors proposed a new Raman peak recognition method named bi-seale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identifica- tion. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identif- ying a Raman spectrum is 0. 51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal- to-noise ratio of Raman peak is greater than or equal to 6 (modem Raman spectrometers feature an excellent signal-to-noise rati- o), the recognition accuracy with the algorithm is higher than 99 %, while it is less than 84% with the continuous wavelet trans- form method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.254