检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LI LingGuang
机构地区:[1]Department of Mathematics,Tongji University [2]School of Mathematical Sciences,Fudan University
出 处:《Science China Mathematics》2014年第1期61-67,共7页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant No. 11271275)
摘 要:Let X be a smooth projective curve of genus g 2 over an algebraically closed field k of characteristic p>0,and F:X→X(1)the relative Frobenius morphism.Let M s X(r,d)(resp.M ss X(r,d))be the moduli space of(resp.semi-)stable vector bundles of rank r and degree d on X.We show that the set-theoretic map S ss Frob:M ss X(r,d)→M ss X(1)(rp,d+r(p-1)(g-1))induced by[E]→[F(E)]is a proper morphism.Moreover,the induced morphism S s Frob:M s X(r,d)→M s X(1)(rp,d+r(p-1)(g-1))is a closed immersion.As an application,we obtain that the locus of moduli space M s X(1)(p,d)consisting of stable vector bundles whose Frobenius pull backs have maximal Harder-Narasimhan polygons is isomorphic to the Jacobian variety Jac X of X.Let X be a smooth projective curve of genus g 2 over an algebraically closed field k of characteristic p〉0,and F:X→X(1)the relative Frobenius morphism.Let M s X(r,d)(resp.M ss X(r,d))be the moduli space of(resp.semi-)stable vector bundles of rank r and degree d on X.We show that the set-theoretic map S ss Frob:M ss X(r,d)→M ss X(1)(rp,d+r(p-1)(g-1))induced by[E]→[F(E)]is a proper morphism.Moreover,the induced morphism S s Frob:M s X(r,d)→M s X(1)(rp,d+r(p-1)(g-1))is a closed immersion.As an application,we obtain that the locus of moduli space M s X(1)(p,d)consisting of stable vector bundles whose Frobenius pull backs have maximal Harder-Narasimhan polygons is isomorphic to the Jacobian variety Jac X of X.
关 键 词:Frobenius morphism stable vector bundle moduli space STRATIFICATION 14H60 14D20 13A35
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.240.192