Total coloring of graphs embedded in surfaces of nonnegative Euler characteristic  

Total coloring of graphs embedded in surfaces of nonnegative Euler characteristic

在线阅读下载全文

作  者:WANG HuiJuan LIU Bin WU JianLiang WANG Bing 

机构地区:[1]School of Mathematics,Shandong University [2]Department of Mathematics,Ocean University of China [3]Department of Mathematics,Zaozhuang University

出  处:《Science China Mathematics》2014年第1期211-220,共10页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos. 11201440,11271006 and 11271341);Graduate Independent Innovation Foundation of Shandong University (Grant No. yzc12100)

摘  要:Let G be a graph which can be embedded in a surface of nonnegative Euler characteristic.In this paper,it is proved that the total chromatic number of G is △(G)+1 if △(G)9,where △(G)is the maximum degree of G.Let G be a graph which can be embedded in a surface of nonnegative Euler characteristic.In this paper,it is proved that the total chromatic number of G is △(G)+1 if △(G)9,where △(G)is the maximum degree of G.

关 键 词:TOTAL coloring Euler characteristic surface 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象