传感器网络中过滤机制下高效top-k查询处理技术  被引量:2

Energy-efficient top-k Query Processing Based on Filters in Wireless Sensor Networks

在线阅读下载全文

作  者:张慧[1] 郑吉平[1,2] 韩秋廷[1] 

机构地区:[1]南京航空航天大学计算机科学与技术学院,南京210016 [2]南京大学计算机软件新技术国家重点实验室,南京210093

出  处:《小型微型计算机系统》2014年第1期44-49,共6页Journal of Chinese Computer Systems

基  金:教育部高等学校博士学科点专项科研基金项目(20103218110017)资助;江苏高校优势学科建设工程项目资助;南京航空航天大学青年科技创新基金项目(NS2013089;NN2012102)资助

摘  要:如何能量高效的进行top-k查询处理是无线传感器网络领域中的一个重要课题.节点设置过滤窗口可以避免与top-k查询无关的数据上传到汇聚节点或者基站,因而大大减少传感器网络的通信量,节省传感器节点能量.然而,已有算法如FILA、DAFM,基站到传感器节点的过滤窗口更新中仍然存在很大开销.提出一种基于预测信息更新窗口的top-k查询算法FAPU,该算法根据历史数据采用ARIMA时间序列预测模型对接下来s个时刻的传感器数据进行预测,根据预测信息进行多步窗口更新的代价评估,避免不必要的窗口更新,从而减小窗口更新的能量消耗.实验结果表明在确保top-k查询准确性的同时,本文所提出的FAPU算法与已有算法相比更加能量有效.Processing top-k query in an energy-efficient manner is an important topic in wireless sensor networks. It can keep sensor nodes from transmitting redundant data to base station by installing thresholds on nodes, which decreased the communication cost between the base station and sensor nodes. However, existing algorithms such as FILA, DAFM consume much energy when updating window parameters of filters. In this paper, a new top-k algorithm named FAPU is proposed by forecasting methods to update window parameters of filters. It can predict the next s sensor values based on ARIMA time series forecasting models which can be learned by historical data. By estimating the cost of updating window parameters based on predicted information, unnecessary updates of window parameters can be avoided. Thus, the cost of updating window parameters is decreased. Experimental results show that our FAPU algorithm is more energy-efficient than existing algorithms while ensuring the accuracy of top-k query results.

关 键 词:无线传感器网络 TOP-K Filter-based Monitoring Approach(FILA) 时间序列 AUTOREGRESSIVE Integrated Moving AVERAGE (ARIMA) 

分 类 号:TP392[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象