线性相关性问题和线性三角化的一些结果(英文)  

Some remarks on the linearly dependent problem and linear triangularizability

在线阅读下载全文

作  者:孙鹏举[1] 严丹[1] 唐国平[1] 

机构地区:[1]中国科学院大学数学科学学院,北京100049

出  处:《中国科学院大学学报(中英文)》2014年第1期1-4,共4页Journal of University of Chinese Academy of Sciences

基  金:Supported by National Natural Science Foundation of China(11071247)

摘  要:首先证明二次线性Keller映射的齐次部分在某些条件下是线性相关的;其次,给出多项式可线性上三角化的一个等价条件;最后,证明如果(J(F-X))2=0且n≤3,那么F是可线性上三角化的.In this paper, we first show that the homogeneous parts of the quadratic-linear Keller maps are linearly dependent under certain conditions. Then we give an equivalent statement about the linearly triangularizable polynomials. Finally, we show that a polynomial F is linearly triangularizable if ( J( F - X) ) 2 = 0 and n ≤ 3.

关 键 词:相关性问题 线性上三角化 雅克比猜想 

分 类 号:O153[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象