电动汽车充电站规划的多种群混合遗传算法  被引量:16

Electric Vehicle Charging Station Planning Based on Multiple-population Hybrid Genetic Algorithm

在线阅读下载全文

作  者:冯超[1] 周步祥[1] 林楠[2] 徐飞[1] 李阳[1] 夏榆杭[1] 

机构地区:[1]四川大学电气信息学院,成都610065 [2]四川电力职业技术学院,成都610071

出  处:《电力系统及其自动化学报》2013年第6期123-129,共7页Proceedings of the CSU-EPSA

摘  要:建立考虑充电站建设运营成本和充电者充电成本的电动汽车充电站综合成本最小模型。针对电动汽车充电站规划的特点,提出了一种新的多种群混合遗传算法(MPHGA)。该算法将标准遗传算法(SGA)与交替定位分配算法(ALA)结合,针对充电站规划的多目标性,采用多种群概念,建立多种群并进行协同进化搜索。基于地理信息系统(GIS),考虑地理信息对充电站选址的影响,通过某市充电站规划实例验证了该模型和方法的正确性和有效性。The electric vehicle charging station's minimum comprehensive cost model is established in the paper, which considers charging station construction and operation cost and the cost of charging people. According to the characteristics of the electric vehicle charging station planning, a new kind of multiple-population hybrid genetic al- gorithm( MPHGA )is proposed .The algorithm combines the standard genetic algorithm (SGA) with alternative location and allocation algorithm (ALA). According to the multi-objective of the charging station planning, the concept of muhigroup is used to do collaborative evolution search. Based on the geographic information system (GIS), the geo- graphic information influence on the location of the charging station will be considered. The model and method are proved that they have great correctness and effectiveness by a charging station planning example of a city.

关 键 词:地理信息系统 多种群 混合遗传算法 电动汽车充电站 选址定容 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象