机构地区:[1]State Key Laboratory of Forest and Soil Ecology,Qingyuan Experimental Station of Forest Ecology,Institute of Applied Ecology,Chinese Academy of Sciences [2]University of Chinese Academy of Sciences
出 处:《Journal of Forestry Research》2014年第1期53-62,共10页林业研究(英文版)
基 金:supported by a grant from the National Nature Science Foundation of China(30830085,31330016)
摘 要:As one of the three major five-leaved pines in the northern hemisphere, Pinus koraiensis is the most important dominant tree species in the natural mixed-broadleaved Korean pine forests. However, the regeneration of P koraiensis under the canopy of secondary forest stands is poor because of the light limitation. This study was conducted to understand how P koraiensis seedlings adapt to different light intensities and what would be the optimum light level for their establishment and growth. Three repetition plots with four light intensities (15%, 30%, 60% and 100% of the natural incident irradiances, achieved by suspending layers of black nylon net above and surrounding the plots) were set up under natural climate conditions in a montane region in eastern Liaoning Province, Northeast China. A total of 80 P koraiensis seedlings with similar height and root collar diameter were transplanted into four plots. After one year of acclimation to the specific light conditions, the seasonal variations of the photosynthetic variables and needle traits of the current and one-year-old needles, and the growth parameters were observed under four light intensities. The results indicated that: (1) The seedling at 60% treatment exhibited the greatest growth, which agreed with the response of the light-saturated photosynthetic rates (Amax) and the dark respiration rate (Rd) in the current and one-year-old needles, i.e., Rd at 60% treatment was significantly lower than that at 100% treatment, but Amax did not differ between the seedlings at 100% and 60% treatments. (2) The P. koraiensis seedlings have a certain photosynthetic plasticity to adapt the light conditions by adjusting their needle traits and regulating the physiological processes, because Amax, Rd, light saturation point and compensation point, the needle mass area, needle nitrogen and chlorophyll contents were significantly (p〈0.05) correlated with the light intensities. Especially, Am,x at 100% and 60% treatments was significantly higher (p�As one of the three major five-leaved pines in the northern hemisphere, Pinus koraiensis is the most important dominant tree species in the natural mixed-broadleaved Korean pine forests. However, the regeneration of P koraiensis under the canopy of secondary forest stands is poor because of the light limitation. This study was conducted to understand how P koraiensis seedlings adapt to different light intensities and what would be the optimum light level for their establishment and growth. Three repetition plots with four light intensities (15%, 30%, 60% and 100% of the natural incident irradiances, achieved by suspending layers of black nylon net above and surrounding the plots) were set up under natural climate conditions in a montane region in eastern Liaoning Province, Northeast China. A total of 80 P koraiensis seedlings with similar height and root collar diameter were transplanted into four plots. After one year of acclimation to the specific light conditions, the seasonal variations of the photosynthetic variables and needle traits of the current and one-year-old needles, and the growth parameters were observed under four light intensities. The results indicated that: (1) The seedling at 60% treatment exhibited the greatest growth, which agreed with the response of the light-saturated photosynthetic rates (Amax) and the dark respiration rate (Rd) in the current and one-year-old needles, i.e., Rd at 60% treatment was significantly lower than that at 100% treatment, but Amax did not differ between the seedlings at 100% and 60% treatments. (2) The P. koraiensis seedlings have a certain photosynthetic plasticity to adapt the light conditions by adjusting their needle traits and regulating the physiological processes, because Amax, Rd, light saturation point and compensation point, the needle mass area, needle nitrogen and chlorophyll contents were significantly (p〈0.05) correlated with the light intensities. Especially, Am,x at 100% and 60% treatments was significantly higher (p�
关 键 词:light requirement needle age needle trait photosynthetic plasticity Pinus koraiensis
分 类 号:S791.247[农业科学—林木遗传育种] Q945.11[农业科学—林学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...