检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学测绘学院,武汉430079 [2]武汉大学资源与环境科学学院,武汉430079
出 处:《计算机工程》2014年第1期49-54,共6页Computer Engineering
基 金:国家自然科学基金资助项目(41201484);中央高校基本科研业务费专项资金资助项目(3101053)
摘 要:为实现大规模点云的快速绘制,提出以部分内存访问机制为基础、以节点点数上限为叶节点形成条件的平衡八叉树存储结构。设计点云内外存调度绘制流程,包括节点可见性判断、内外存数据调度和点云绘制等环节。为提高可见性判断的效率,在视点与节点距离、夹角约束条件的基础上给出节点可视半径约束。利用实测大规模点云数据进行实验,结果证明,该技术可以在有限的内存资源条件下,以较小的内存消耗实现上亿级规模点云从整体到局部的流畅绘制。For fast rendering of large scale point cloud, balanced octree storage structure is proposed based on part-memory access mechanism and node points limit as leaf nodes forming condition. The rendering process in-core and out-of-core is designed, including node visible judgment, data scheduling and point cloud drawing. In order to improve the efficiency of visibility judgment, node visualization radius is proposed on the basis of distance and angle constraints between viewpoint and node. Experiments are done with measured large-scale point cloud data. It concludes that the technical approach in this paper is able to smoothly render one hundred million point cloud from global to local with a smaller memory consumption in limited memory resources.
关 键 词:大规模点云 平衡八叉树 内外存调度 部分内存访问 可见性判断 点云绘制
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49