检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程》2014年第1期55-58,62,共5页Computer Engineering
基 金:国家科技支撑计划基金资助项目“增强型搜索系统架构、关键技术及测试规范的研究”(2011BAH11B01);中科院先导专项基金资助项目“网络视频传播与控制”(XDA06030900)
摘 要:在海量网络资源中,用户为了寻找喜欢的视频往往需要进行频繁操作,个性化推荐服务可以有效解决该问题,但当前推荐服务准确度较低,为此,提出一种基于协作过滤的改进推荐方法。根据相似用户群,即邻居集的点播记录确定当前用户的推荐电影子集,挖掘当前用户的喜好,建立兴趣模型,并与推荐子集中的电影进行匹配,按匹配度高低进行推荐。对推荐电影子集进行分类,以适应家庭中多用户观看的情况。另外在系统运行初期采用相似影片的推荐以一定程度地缓解冷启动问题。实验结果表明,与现有协作过滤算法相比,改进推荐方法的推荐准确度有明显提高。Users looking for a favorite video in vast amounts of network resources often need frequent operating, and personalized recommendation service can be an effective solution to this problem. Against the current lower recommendation accuracy, this paper presents an improved recommendation method based on collaborative filtering. It determines a movies subset that is recommended according to the past records of similar users namely neighbors set. Then it mines the preferences of current user, establishes the interest model of current user, and matches with the movies to recommend. Recommendation is in accordance with the level of matching degree. Afterwards, it classifies the film sets that are recommended to adapt to multi-user viewing in families. Additionally, it recommends similar films in the system early running to solve the cold-start problem in a certain degree. Experimental results show that the improved recommended method has distinct higher recommendation accuracy than the existing collaborative filtering algorithm.
关 键 词:协作过滤 个性化推荐 基于用户 兴趣模型 家庭用户 冷启动
分 类 号:TP311.12[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229