检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东电网电力调度控制中心,广东广州510075 [2]湖南大学电气与信息工程学院,湖南长沙410082
出 处:《广东电力》2013年第12期18-25,共8页Guangdong Electric Power
基 金:国家自然科学基金资助项目(51277059)
摘 要:准确的短期母线负荷预测是实现节能降耗与调度精细化管理的基础,提出了一种基于解耦机制的预测方法。首先研究划分样本集最优簇结构的AFS(AP,FCM,Silhouette)聚类算法。利用AP聚类(affinity propagation clustering)计算样本集聚类数的搜索区间;从大到小排列各样本点的密度指标,得到初始化矩阵;通过Silhouette指标进行有效性检验,获取最优聚类结果。将预测过程分为负荷水平预测和标幺曲线预测两部分,并制定适应其各自特点的预测策略。采用改进的灰色关联分析计算各日特征相关因素关联负荷水平的权值,并将该权值赋予相似选择的目标函数,由最小二乘支持向量机训练相似集进而做出预测;划分标幺曲线样本集的最优簇结构,利用逐步判别分析建立的Bayes判别函数将目标日归类,并根据相似度加权平均该类历史标幺曲线。实例分析验证了该预测机制及模型的优越性。Correct short-time bus load prediction is the basis for delicacy management on realizing energy saving and cost re- duction and dispatch. This paper proposes a kind of prediction method based on decoupling mechanism which firstly studies AFS clustering algorithm for dividing optimal cluster structure of sample set. By using AP clustering, it is able to calculate searching region of number of cluster of the sample set. According to density index of various sample points arranged from large to small, it is feasible to acquire initial matrix. On the basis of effectiveness check by using Silhouette index, it is able to obtain optimal clustering results. This paper divides prediction process into two parts including load level prediction and per unit curve prediction and formulates related prediction strategies suitable for each characteristic. Using improved grey corre- lation analysis, it studies calculation on weight of associated load level of characteristic relevant factor of each day which is given to similar selective obiective function. By using least square support vector machine to train the similar set, it is able to make prediction. Dividing the optimal clustering structure of per unit curve sample set and classifying the objective day by making use of Bayes discrimination function established by means of stepwise analysis, it is passable to weighted average this kind of historic per unit curve according to similarity. Practical example verifies superiority of this prediction mechanism and modcl
关 键 词:短期母线负荷预测 解耦机制 AFS聚类算法 预测策略 相似日
分 类 号:TM714[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3