Stabilized Multi-domain Simulation Algorithms and Their Application in Simulation Platform for Forging Manipulator  被引量:3

Stabilized Multi-domain Simulation Algorithms and Their Application in Simulation Platform for Forging Manipulator

在线阅读下载全文

作  者:HUANG Shunzhou ZHAO Yong WANG Hao LIN Zhongqin 

机构地区:[1]State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University [2]Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University

出  处:《Chinese Journal of Mechanical Engineering》2014年第1期92-102,共11页中国机械工程学报(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.51075259,51121063,51305256);National Basic Research Program of China(973 Program,Grant No.2006CB705400)

摘  要:Most researches focused on the analytical stabilized algorithm for the modular simulation of single domain, e.g., pure mechanical systems. Only little work has been performed on the problem of multi-domain simulation stability influenced by algebraic loops. In this paper, the algebraic loop problem is studied by a composite simulation method to reveal the internal relationship between simulation stability and system topologies and simulation unit models. A stability criterion of multi-domain composite simulation is established, and two algebraic loop compensation algorithms are proposed using numerical iteration and approximate function in multi-domain simulation. The numerical stabilized algorithm is the Newton method for the solution of the set of nonlinear equations, and it is used here in simulation of the system composed of mechanical system and hydraulic system. The approximate stabilized algorithm is the construction of response surface for inputs and outputs of unknown unit model, and it is utilized here in simulation of the system composed of forging system, mechanical and hydraulic system. The effectiveness of the algorithms is verified by a case study of multi-domain simulation for forging system composed of thermoplastic deformation of workpieces, mechanical system and hydraulic system of a manipulator. The system dynamics simulation results show that curves of motion and force are continuous and convergent. This paper presents two algorithms, which are applied to virtual reality simulation of forging process in a simulation platform for a manipulator, and play a key role in simulation efficiency and stability.Most researches focused on the analytical stabilized algorithm for the modular simulation of single domain, e.g., pure mechanical systems. Only little work has been performed on the problem of multi-domain simulation stability influenced by algebraic loops. In this paper, the algebraic loop problem is studied by a composite simulation method to reveal the internal relationship between simulation stability and system topologies and simulation unit models. A stability criterion of multi-domain composite simulation is established, and two algebraic loop compensation algorithms are proposed using numerical iteration and approximate function in multi-domain simulation. The numerical stabilized algorithm is the Newton method for the solution of the set of nonlinear equations, and it is used here in simulation of the system composed of mechanical system and hydraulic system. The approximate stabilized algorithm is the construction of response surface for inputs and outputs of unknown unit model, and it is utilized here in simulation of the system composed of forging system, mechanical and hydraulic system. The effectiveness of the algorithms is verified by a case study of multi-domain simulation for forging system composed of thermoplastic deformation of workpieces, mechanical system and hydraulic system of a manipulator. The system dynamics simulation results show that curves of motion and force are continuous and convergent. This paper presents two algorithms, which are applied to virtual reality simulation of forging process in a simulation platform for a manipulator, and play a key role in simulation efficiency and stability.

关 键 词:DYNAMICS multi-domain simulation STABILITY algebraic loop 

分 类 号:TG315[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象