检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:乔宗良[1] 张蕾[2] 周建新[1] 司风琪[1] 徐治皋[1]
机构地区:[1]东南大学能源热转换及其过程测控教育部重点实验室,南京210096 [2]南京化工职业技术学院机械技术系,南京210048
出 处:《仪器仪表学报》2014年第1期234-240,共7页Chinese Journal of Scientific Instrument
基 金:江苏省自然科学基金(BK20130612);国家自然科学基金(51176030)资助项目
摘 要:针对最小二乘支持向量机(LS-SVM)在处理大规模数据集的回归和分类问题时缺少支持向量所具有的稀疏性和难以确定最佳模型参数值的问题,提出一种改进算法,利用样本间马氏距离分析样本相似程度,剔除部分相关样本,对样本集进行约简,以恢复LS-SVM的稀疏性,进而利用具有较强全局搜索能力的混沌粒子群优化算法(CPSO)对LS-SVM建模过程中的模型参数进行优化选择,以提高模型的拟合精度和泛化能力。将提出的改进算法用于湿法脱硫系统浆液pH值的软测量建模,给出了应用该方法的具体步骤,研究结果表明,该算法取得了较高的建模精度和泛化能力,为pH值的在线实时监测提供了一个有效手段。Aiming at the fact that in dealing with the regression and classification problems of large scale data set with a lot of samples, traditional least squares support vector machine (LS-SVM) algorithm has some demerits, such as, the loss of sparseness and the difficulty in selecting model parameters, an improved algorithm is proposed to overcome the above drawbacks in this paper. Mahalanobis distance among samples is used to analyze the sample similarity, eliminate some related samples, perform reduction on the samples and recover the sparseness of the least squares vec- tor machine. Moreover, the chaos particle swarm optimization (CPSO) that has strong global searching capability is introduced to optimize the model parameters in the LS-SVM modeling process to improve the fitting accuracy and en- hance its generalization ability. The improved algorithm was used to establish the soft sensor model for the slurry pH value of WFGb. The detailed procedures of applying this method are given. The research results show that the im- proved algorithm achieves high modeling accuracy and good generalization ability, which meets the industrial meas- urement requirement and provides an effective means for the online and real time pH value monitoring.
关 键 词:混沌粒子群优化 马氏距离 最小二乘支持向量机 稀疏性 pH值 软测量
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175